RESUMO
Successful immunotherapy relies on triggering complex responses involving T cell dynamics in tumors and the periphery. Characterizing these responses remains challenging using static human single-cell atlases or mouse models. To address this, we developed a framework for in vivo tracking of tumor-specific CD8+ T cells over time and at single-cell resolution. Our tools facilitate the modeling of gene program dynamics in the tumor microenvironment (TME) and the tumor-draining lymph node (tdLN). Using this approach, we characterize two modes of anti-programmed cell death protein 1 (PD-1) activity, decoupling induced differentiation of tumor-specific activated precursor cells from conventional type 1 dendritic cell (cDC1)-dependent proliferation and recruitment to the TME. We demonstrate that combining anti-PD-1 therapy with anti-4-1BB agonist enhances the recruitment and proliferation of activated precursors, resulting in tumor control. These data suggest that effective response to anti-PD-1 therapy is dependent on sufficient influx of activated precursor CD8+ cells to the TME and highlight the importance of understanding system-level dynamics in optimizing immunotherapies.
Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Microambiente Tumoral , Animais , Camundongos , Imunoterapia/métodos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Microambiente Tumoral/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Linhagem Celular TumoralRESUMO
The study of cardiac physiology is hindered by physiological differences between humans and small-animal models. Here we report the generation of multi-chambered self-paced vascularized human cardiac organoids formed under anisotropic stress and their applicability to the study of cardiac arrhythmia. Sensors embedded in the cardiac organoids enabled the simultaneous measurement of oxygen uptake, extracellular field potentials and cardiac contraction at resolutions higher than 10 Hz. This microphysiological system revealed 1 Hz cardiac respiratory cycles that are coupled to the electrical rather than the mechanical activity of cardiomyocytes. This electro-mitochondrial coupling was driven by mitochondrial calcium oscillations driving respiration cycles. Pharmaceutical or genetic inhibition of this coupling results in arrhythmogenic behaviour. We show that the chemotherapeutic mitoxantrone induces arrhythmia through disruption of this pathway, a process that can be partially reversed by the co-administration of metformin. Our microphysiological cardiac systems may further facilitate the study of the mitochondrial dynamics of cardiac rhythms and advance our understanding of human cardiac physiology.
Assuntos
Fenômenos Bioquímicos , Miócitos Cardíacos , Animais , Humanos , Miócitos Cardíacos/metabolismo , Arritmias Cardíacas , Contração Miocárdica/fisiologia , OrganoidesRESUMO
Background: Viral infection is associated with a significant rewire of the host metabolic pathways, presenting attractive metabolic targets for intervention. Methods: We chart the metabolic response of lung epithelial cells to SARS-CoV-2 infection in primary cultures and COVID-19 patient samples and perform in vitro metabolism-focused drug screen on primary lung epithelial cells infected with different strains of the virus. We perform observational analysis of Israeli patients hospitalized due to COVID-19 and comparative epidemiological analysis from cohorts in Italy and the Veteran's Health Administration in the United States. In addition, we perform a prospective non-randomized interventional open-label study in which 15 patients hospitalized with severe COVID-19 were given 145 mg/day of nanocrystallized fenofibrate added to the standard of care. Results: SARS-CoV-2 infection produced transcriptional changes associated with increased glycolysis and lipid accumulation. Metabolism-focused drug screen showed that fenofibrate reversed lipid accumulation and blocked SARS-CoV-2 replication through a PPARα-dependent mechanism in both alpha and delta variants. Analysis of 3233 Israeli patients hospitalized due to COVID-19 supported in vitro findings. Patients taking fibrates showed significantly lower markers of immunoinflammation and faster recovery. Additional corroboration was received by comparative epidemiological analysis from cohorts in Europe and the United States. A subsequent prospective non-randomized interventional open-label study was carried out on 15 patients hospitalized with severe COVID-19. The patients were treated with 145 mg/day of nanocrystallized fenofibrate in addition to standard-of-care. Patients receiving fenofibrate demonstrated a rapid reduction in inflammation and a significantly faster recovery compared to patients admitted during the same period. Conclusions: Taken together, our data suggest that pharmacological modulation of PPARα should be strongly considered as a potential therapeutic approach for SARS-CoV-2 infection and emphasizes the need to complete the study of fenofibrate in large randomized controlled clinical trials. Funding: Funding was provided by European Research Council Consolidator Grants OCLD (project no. 681870) and generous gifts from the Nikoh Foundation and the Sam and Rina Frankel Foundation (YN). The interventional study was supported by Abbott (project FENOC0003). Clinical trial number: NCT04661930.
Assuntos
COVID-19 , Fenofibrato , Humanos , Fenofibrato/uso terapêutico , Lipídeos , PPAR alfa , Estudos Prospectivos , SARS-CoV-2 , Resultado do TratamentoRESUMO
Aminoglycosides are an important class of antibiotics that play a critical role in the treatment of life-threatening infections, but their use is limited by their toxicity. In fact, gentamicin causes severe nephrotoxicity in 17% of hospitalized patients. The kidney proximal tubule is particularly vulnerable to drug-induced nephrotoxicity due to its role in drug transport. In this work, we developed a perfused vascularized model of human kidney tubuloids integrated with tissue-embedded microsensors that track the metabolic dynamics of aminoglycoside-induced renal toxicity in real time. Our model shows that gentamicin disrupts proximal tubule polarity at concentrations 20-fold below its TC50, leading to a 3.2-fold increase in glucose uptake, and reverse TCA cycle flux culminating in a 40-fold increase in lipid accumulation. Blocking glucose reabsorption using the SGLT2 inhibitor empagliflozin significantly reduced gentamicin toxicity by 10-fold. These results demonstrate the utility of sensor-integrated kidney-on-chip platforms to rapidly identify new metabolic mechanisms that may underly adverse drug reactions. The results should improve our ability to modulate the toxicity of novel aminoglycosides.
Assuntos
Aminoglicosídeos , Antibacterianos , Humanos , Aminoglicosídeos/toxicidade , Aminoglicosídeos/metabolismo , Antibacterianos/toxicidade , Gentamicinas/toxicidade , Rim/metabolismo , Túbulos Renais Proximais/metabolismoRESUMO
Despite their key regulatory role and therapeutic potency, the molecular signatures of interactions between T cells and antigen-presenting myeloid cells within the tumor microenvironment remain poorly characterized. Here, we systematically characterize these interactions using RNA sequencing of physically interacting cells (PIC-seq) and find that CD4+PD-1+CXCL13+ T cells are a major interacting hub with antigen-presenting cells in the tumor microenvironment of human non-small cell lung carcinoma. We define this clonally expanded, tumor-specific and conserved T-cell subset as T-helper tumor (Tht) cells. Reconstitution of Tht cells in vitro and in an ovalbumin-specific αß TCR CD4+ T-cell mouse model, shows that the Tht program is primed in tumor-draining lymph nodes by dendritic cells presenting tumor antigens, and that their function is important for harnessing the antitumor response of anti-PD-1 treatment. Our molecular and functional findings support the modulation of Tht-dendritic cell interaction checkpoints as a major interventional strategy in immunotherapy.
Assuntos
Neoplasias Pulmonares , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Células Dendríticas , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/terapia , Camundongos , Linfócitos T Auxiliares-IndutoresRESUMO
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are prevalent liver conditions that underlie the development of life-threatening cirrhosis, liver failure and liver cancer. Chronic necro-inflammation is a critical factor in development of NASH, yet the cellular and molecular mechanisms of immune dysregulation in this disease are poorly understood. Here, using single-cell transcriptomic analysis, we comprehensively profiled the immune composition of the mouse liver during NASH. We identified a significant pathology-associated increase in hepatic conventional dendritic cells (cDCs) and further defined their source as NASH-induced boost in cycling of cDC progenitors in the bone marrow. Analysis of blood and liver from patients on the NAFLD/NASH spectrum showed that type 1 cDCs (cDC1) were more abundant and activated in disease. Sequencing of physically interacting cDC-T cell pairs from liver-draining lymph nodes revealed that cDCs in NASH promote inflammatory T cell reprogramming, previously associated with NASH worsening. Finally, depletion of cDC1 in XCR1DTA mice or using anti-XCL1-blocking antibody attenuated liver pathology in NASH mouse models. Overall, our study provides a comprehensive characterization of cDC biology in NASH and identifies XCR1+ cDC1 as an important driver of liver pathology.
Assuntos
Células Dendríticas/imunologia , Fígado Gorduroso/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Receptores de Quimiocinas/genética , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Células Dendríticas/patologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Humanos , Fígado/imunologia , Fígado/patologia , Linfonodos/imunologia , Linfonodos/patologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores de Quimiocinas/imunologia , Linfócitos T/imunologia , Linfócitos T/patologiaRESUMO
The kidney plays a critical role in fluid homeostasis, glucose control, and drug excretion. Loss of kidney function due to drug-induced nephrotoxicity affects over 20% of the adult population. The kidney proximal tubule is a complex vascularized structure that is particularly vulnerable to drug-induced nephrotoxicity. Here, we introduce a model of vascularized human kidney spheroids with integrated tissue-embedded microsensors for oxygen, glucose, lactate, and glutamine, providing real-time assessment of cellular metabolism. Our model shows that both the immunosuppressive drug cyclosporine and the anticancer drug cisplatin disrupt proximal tubule polarity at subtoxic concentrations, leading to glucose accumulation and lipotoxicity. Impeding glucose reabsorption using glucose transport inhibitors blocked cyclosporine and cisplatin toxicity by 1000- to 3-fold, respectively. Retrospective study of 247 patients who were diagnosed with kidney damage receiving cyclosporine or cisplatin in combination with the sodium-glucose cotransporter-2 (SGLT2) inhibitor empagliflozin showed significant (P < 0.001) improvement of kidney function, as well as reduction in creatinine and uric acid, markers of kidney damage. These results demonstrate the potential of sensor-integrated kidney-on-chip platforms to elucidate mechanisms of action and rapidly reformulate effective therapeutic solutions, increasing drug safety and reducing the cost of clinical and commercial failures.
Assuntos
Preparações Farmacêuticas , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Rim , Dispositivos Lab-On-A-Chip , Estudos Retrospectivos , Transportador 1 de Glucose-SódioRESUMO
Tertiary lymphoid structures (TLS) are organized aggregates of B and T cells formed ectopically during different stages of life in response to inflammation, infection, or cancer. Here, we describe formation of structures reminiscent of TLS in the spinal cord meninges under several central nervous system (CNS) pathologies. After acute spinal cord injury, B and T lymphocytes locally aggregate within the meninges to form TLS-like structures, and continue to accumulate during the late phase of the response to the injury, with a negative impact on subsequent pathological conditions, such as experimental autoimmune encephalomyelitis. Using a chronic model of spinal cord pathology, the mSOD1 mouse model of amyotrophic lateral sclerosis, we further showed by single-cell RNA-sequencing that a meningeal lymphocyte niche forms, with a unique organization and activation state, including accumulation of pre-B cells in the spinal cord meninges. Such a response was not found in the CNS-draining cervical lymph nodes. The present findings suggest that a special immune response develops in the meninges during various neurological pathologies in the CNS, a possible reflection of its immune privileged nature.
Assuntos
Esclerose Lateral Amiotrófica/imunologia , Linfócitos B/imunologia , Imunidade , Meninges/imunologia , Traumatismos da Medula Espinal/imunologia , Linfócitos T/imunologia , Estruturas Linfoides Terciárias/imunologia , Doença Aguda , Animais , Doença Crônica , Modelos Animais de Doenças , Inflamação/imunologia , Linfonodos/imunologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pescoço , Vértebras Torácicas/lesõesRESUMO
Cell function and activity are regulated through integration of signaling, epigenetic, transcriptional, and metabolic pathways. Here, we introduce INs-seq, an integrated technology for massively parallel recording of single-cell RNA sequencing (scRNA-seq) and intracellular protein activity. We demonstrate the broad utility of INs-seq for discovering new immune subsets by profiling different intracellular signatures of immune signaling, transcription factor combinations, and metabolic activity. Comprehensive mapping of Arginase 1-expressing cells within tumor models, a metabolic immune signature of suppressive activity, discovers novel Arg1+ Trem2+ regulatory myeloid (Mreg) cells and identifies markers, metabolic activity, and pathways associated with these cells. Genetic ablation of Trem2 in mice inhibits accumulation of intra-tumoral Mreg cells, leading to a marked decrease in dysfunctional CD8+ T cells and reduced tumor growth. This study establishes INs-seq as a broadly applicable technology for elucidating integrated transcriptional and intra-cellular maps and identifies the molecular signature of myeloid suppressive cells in tumors.
Assuntos
Glicoproteínas de Membrana/metabolismo , Neoplasias/patologia , RNA Citoplasmático Pequeno/química , Receptores Imunológicos/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/metabolismo , RNA Citoplasmático Pequeno/metabolismo , Receptores Imunológicos/genética , Análise de Sequência de RNA , Análise de Célula Única , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por MitógenoRESUMO
Viruses are a constant threat to global health as highlighted by the current COVID-19 pandemic. Currently, lack of data underlying how the human host interacts with viruses, including the SARS-CoV-2 virus, limits effective therapeutic intervention. We introduce Viral-Track, a computational method that globally scans unmapped single-cell RNA sequencing (scRNA-seq) data for the presence of viral RNA, enabling transcriptional cell sorting of infected versus bystander cells. We demonstrate the sensitivity and specificity of Viral-Track to systematically detect viruses from multiple models of infection, including hepatitis B virus, in an unsupervised manner. Applying Viral-Track to bronchoalveloar-lavage samples from severe and mild COVID-19 patients reveals a dramatic impact of the virus on the immune system of severe patients compared to mild cases. Viral-Track detects an unexpected co-infection of the human metapneumovirus, present mainly in monocytes perturbed in type-I interferon (IFN)-signaling. Viral-Track provides a robust technology for dissecting the mechanisms of viral-infection and pathology.
Assuntos
Infecções por Coronavirus/fisiopatologia , Interações Hospedeiro-Patógeno , Pneumonia Viral/fisiopatologia , Software , Animais , Betacoronavirus/isolamento & purificação , COVID-19 , Coinfecção/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Humanos , Interferons/imunologia , Pulmão/patologia , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2 , Sensibilidade e Especificidade , Análise de Sequência de RNA , Índice de Gravidade de Doença , Análise de Célula ÚnicaRESUMO
Crosstalk between neighboring cells underlies many biological processes, including cell signaling, proliferation and differentiation. Current single-cell genomic technologies profile each cell separately after tissue dissociation, losing information on cell-cell interactions. In the present study, we present an approach for sequencing physically interacting cells (PIC-seq), which combines cell sorting of physically interacting cells (PICs) with single-cell RNA-sequencing. Using computational modeling, PIC-seq systematically maps in situ cellular interactions and characterizes their molecular crosstalk. We apply PIC-seq to interrogate diverse interactions including immune-epithelial PICs in neonatal murine lungs. Focusing on interactions between T cells and dendritic cells (DCs) in vitro and in vivo, we map T cell-DC interaction preferences, and discover regulatory T cells as a major T cell subtype interacting with DCs in mouse draining lymph nodes. Analysis of T cell-DC pairs reveals an interaction-specific program between pathogen-presenting migratory DCs and T cells. PIC-seq provides a direct and broadly applicable technology to characterize intercellular interaction-specific pathways at high resolution.
Assuntos
Células Dendríticas/citologia , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Linfócitos T/citologia , Algoritmos , Animais , Animais Recém-Nascidos , Comunicação Celular , Células Cultivadas , Biologia Computacional , Células Dendríticas/química , Feminino , Citometria de Fluxo , Pulmão/química , Pulmão/citologia , Camundongos , Análise de Sequência de RNA , Linfócitos T/químicaRESUMO
Lung development and function arises from the interactions between diverse cell types and lineages. Using single-cell RNA sequencing (RNA-seq), we characterize the cellular composition of the lung during development and identify vast dynamics in cell composition and their molecular characteristics. Analyzing 818 ligand-receptor interaction pairs within and between cell lineages, we identify broadly interacting cells, including AT2, innate lymphocytes (ILCs), and basophils. Using interleukin (IL)-33 receptor knockout mice and in vitro experiments, we show that basophils establish a lung-specific function imprinted by IL-33 and granulocyte-macrophage colony-stimulating factor (GM-CSF), characterized by unique signaling of cytokines and growth factors important for stromal, epithelial, and myeloid cell fates. Antibody-depletion strategies, diphtheria toxin-mediated selective depletion of basophils, and co-culture studies show that lung resident basophils are important regulators of alveolar macrophage development and function. Together, our study demonstrates how whole-tissue signaling interaction map on the single-cell level can broaden our understanding of cellular networks in health and disease.
Assuntos
Basófilos/metabolismo , Comunicação Celular , Impressão Genômica , Macrófagos Alveolares/metabolismo , Transcriptoma , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-33/metabolismo , Macrófagos Alveolares/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Célula ÚnicaRESUMO
Microfluidic sorting offers a unique ability to isolate large numbers of cells for bulk proteomic or metabolomics studies but is currently limited by low throughput and persistent clogging at low flow rates. Recently we uncovered the physical principles governing the inertial focusing of particles in high-Reynolds numbers. Here, we superimpose high Reynolds inertial focusing on Dean vortices, to rapidly isolate large quantities of young and adult yeast from mixed populations at a rate of 107 cells/min/channel. Using a new algorithm to rapidly quantify budding scars in isolated yeast populations and system-wide proteomic analysis, we demonstrate that protein quality control and expression of established yeast aging markers such as CalM, RPL5, and SAM1 may change after the very first replication events, rather than later in the aging process as previously thought. Our technique enables the large-scale isolation of microorganisms based on minute differences in size (±1.5 µm), a feat unmatched by other technologies.
Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Proteômica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Desenho de Equipamento , Microfluídica/instrumentaçãoRESUMO
Drug development is currently hampered by the inability of animal experiments to accurately predict human response. While emerging organ on chip technology offers to reduce risk using microfluidic models of human tissues, the technology still mostly relies on end-point assays and biomarker measurements to assess tissue damage resulting in limited mechanistic information and difficulties to detect adverse effects occurring below the threshold of cellular damage. Here we present a sensor-integrated liver on chip array in which oxygen is monitored using two-frequency phase modulation of tissue-embedded microprobes, while glucose, lactate and temperature are measured in real time using microfluidic electrochemical sensors. Our microphysiological platform permits the calculation of dynamic changes in metabolic fluxes around central carbon metabolism, producing a unique metabolic fingerprint of the liver's response to stimuli. Using our platform, we studied the dynamics of human liver response to the epilepsy drug Valproate (Depakine™) and the antiretroviral medication Stavudine (Zerit™). Using E6/E7LOW hepatocytes, we show TC50 of 2.5 and 0.8 mM, respectively, coupled with a significant induction of steatosis in 2D and 3D cultures. Time to onset analysis showed slow progressive damage starting only 15-20 hours post-exposure. However, flux analysis showed a rapid disruption of metabolic homeostasis occurring below the threshold of cellular damage. While Valproate exposure led to a sustained 15% increase in lipogenesis followed by mitochondrial stress, Stavudine exposure showed only a transient increase in lipogenesis suggesting disruption of ß-oxidation. Our data demonstrates the importance of tracking metabolic stress as a predictor of clinical outcome.
Assuntos
Dispositivos Lab-On-A-Chip , Análise do Fluxo Metabólico/instrumentação , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Linhagem Celular , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Estavudina/efeitos adversos , Ácido Valproico/efeitos adversosRESUMO
The influenza virus is a major cause of morbidity and mortality worldwide. Yet, both the impact of intracellular viral replication and the variation in host response across different cell types remain uncharacterized. Here we used single-cell RNA sequencing to investigate the heterogeneity in the response of lung tissue cells to in vivo influenza infection. Analysis of viral and host transcriptomes in the same single cell enabled us to resolve the cellular heterogeneity of bystander (exposed but uninfected) as compared with infected cells. We reveal that all major immune and non-immune cell types manifest substantial fractions of infected cells, albeit at low viral transcriptome loads relative to epithelial cells. We show that all cell types respond primarily with a robust generic transcriptional response, and we demonstrate novel markers specific for influenza-infected as opposed to bystander cells. These findings open new avenues for targeted therapy aimed exclusively at infected cells.
Assuntos
Interações Hospedeiro-Patógeno/genética , Influenza Humana/genética , Orthomyxoviridae/genética , Animais , Sequência de Bases/genética , Linhagem Celular , Células Epiteliais/imunologia , Feminino , Perfilação da Expressão Gênica/métodos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética , Replicação ViralRESUMO
The facilitative glucose transporter (GLUT) family plays a key role in metabolic homeostasis, controlling the absorption rates and rapid response to changing carbohydrate levels. The facilitative GLUT2 transporter is uniquely expressed in metabolic epithelial cells of the intestine, pancreas, liver, and kidney. GLUT2 dysfunction is associated with several pathologies, including Fanconi-Bickel syndrome, a glycogen storage disease, characterized by growth retardation and renal dysfunction. Interestingly, GLUT2 activity is modulated by its cellular localization. Membrane translocation specifically regulates GLUT2 activity in enterocytes, pancreatic ß-cells, hepatocytes, and proximal tubule cells. We have established a system to visualize and quantify GLUT2 translocation, and its dynamics, by live imaging of a mCherry-hGLUT2 fusion protein in polarized epithelial cells. This system enables testing of putative modulators of GLUT2 translocation, which are potential drugs for conditions of impaired glucose homeostasis and associated nephropathy.
Assuntos
Transportador de Glucose Tipo 2/metabolismo , Imagem Molecular , Animais , Cães , Células Epiteliais/metabolismo , Glucose/metabolismo , Humanos , Rim/metabolismo , Células Madin Darby de Rim Canino , Imagem Molecular/métodos , Transporte ProteicoRESUMO
Altered glucose reabsorption via the facilitative glucose transporter 2 (GLUT2) during diabetes may lead to renal proximal tubule cell (RPTC) injury, inflammation, and interstitial fibrosis. These pathologies are also triggered by activating the cannabinoid-1 receptor (CB1R), which contributes to the development of diabetic nephropathy (DN). However, the link between CB1R and GLUT2 remains to be determined. Here, we show that chronic peripheral CB1R blockade or genetically inactivating CB1Rs in the RPTCs ameliorated diabetes-induced renal structural and functional changes, kidney inflammation, and tubulointerstitial fibrosis in mice. Inhibition of CB1R also downregulated GLUT2 expression, affected the dynamic translocation of GLUT2 to the brush border membrane of RPTCs, and reduced glucose reabsorption. Thus, targeting peripheral CB1R or inhibiting GLUT2 dynamics in RPTCs has the potential to treat and ameliorate DN. These findings may support the rationale for the clinical testing of peripherally restricted CB1R antagonists or the development of novel renal-specific GLUT2 inhibitors against DN.
Assuntos
Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Túbulos Renais Proximais/patologia , Receptor CB1 de Canabinoide/metabolismo , Albuminúria/urina , Animais , Transporte Biológico , Glicemia/metabolismo , Nitrogênio da Ureia Sanguínea , Creatinina/urina , Nefropatias Diabéticas/induzido quimicamente , Cães , Fibrose , Glucose/metabolismo , Transportador de Glucose Tipo 2/antagonistas & inibidores , Insulina/sangue , Ilhotas Pancreáticas/patologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase C beta/metabolismo , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Estreptozocina , Sulfonamidas/farmacologiaRESUMO
BACKGROUND: Previous echocardiographic studies have revealed an association between enlarged cardiac chamber volumes and elevated troponin concentrations. An automatic 4-chamber volumetric analysis tool was adopted to investigate this association in patients who underwent cardiac-gated computed tomography angiography (CCTA). HYPOTHESIS: We hypothesized that troponin concentration within the normal range correlates with cardiac chambers' volumes. METHODS: Serum troponin was obtained from 157 ambulatory patients before undergoing CCTA for nonacute coronary artery evaluation. Volumes of the cardiac chambers and the left ventricular mass were automatically analyzed and indexed to body surface area. Patients with a troponin concentrations within the upper quartile (>0.007 ng/mL, n = 39) were compared to patients with a troponin concentrations within the 3 lower quartiles of troponin concentrations (≤0.007 ng/mL, n = 118). RESULTS: None of the patients had a troponin concentration >0.05 ng/mL (the 99th percentile of the general population). There were no significant differences in baseline characteristics between the groups. There were significant correlations between troponin and ventricular volumes after adjustments for age and gender. In an analysis that included 107 patients without any known heart diseases, including those pathological findings in the current CCTA, there were significant correlations between troponin and the left and right ventricular volumes after adjustments for age, gender, and baseline characteristics (odds ratio [OR]: 1.08, 95% confidence interval [CI]: 1.03-1.14, P = 0.002 and OR: 1.11, 95% CI: 1.04-1.19, P = 0.002; respectively). CONCLUSIONS: Using the technology of automatic volumetric analysis in individuals undergoing CCTA, an association between larger right and left cardiac chambers and higher levels of troponin concentration was shown.
Assuntos
Angiografia por Tomografia Computadorizada , Angiografia Coronária/métodos , Hipertrofia Ventricular Esquerda/sangue , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Direita/sangue , Hipertrofia Ventricular Direita/diagnóstico , Tomografia Computadorizada Multidetectores , Troponina/sangue , Biomarcadores/sangue , Técnicas de Imagem de Sincronização Cardíaca , Vasos Coronários/diagnóstico por imagem , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Sistema de RegistrosRESUMO
The central nervous system (CNS) is endowed with several immune-related mechanisms that contribute to its protection and maintenance in homeostasis and under pathology. Here, we discovered an additional mechanism that controls inflammatory responses within the CNS milieu under injurious conditions, involving CD200 ligand (CD200L) expressed by newly formed endothelial cells. We observed that CD200L is constitutively expressed in the mouse healthy CNS by endothelial cells of the blood-cerebrospinal fluid barrier and of the spinal cord meninges, but not by the endothelium of the blood-spinal cord barrier. Following spinal cord injury (SCI), newly formed endothelial cells, located only at the epicenter of the lesion site, expressed CD200L. Moreover, in the absence of CD200L expression by CNS-resident cells, functional recovery of mice following SCI was impaired. High throughput single-cell flow cytometry image analysis following SCI revealed CD200L-dependent direct interaction between endothelial and local CD200R+ myeloid cells, including activated microglia and infiltrating monocyte-derived macrophages (mo-MΦ). Absence of CD200L signaling, both in vitro and in vivo, resulted in a higher inflammatory response of the encountering macrophages, manifested by elevation in mRNA expression of Tnfα and Il1ß, increased intracellular TNFα immunoreactivity, and reduced expression levels of macrophage factors that are associated with resolution of inflammation, Dectin-1, CD206 (mannose receptor), and IL-4R. Collectively, our results highlight the importance of CD200-mediated immune dialogue between endothelial cells and the local resident microglia and infiltrating mo-MΦ within the lesion area, as a mechanism that contributes to regulation of inflammation following acute CNS injury. SIGNIFICANCE STATEMENT: This manuscript focuses on a novel mechanism of inflammation-regulation following spinal cord injury (SCI), orchestrated by CD200-ligand (CD200L) expressed by newly formed endothelial cells within the lesion site. Our study reveals that, in homeostasis, CD200L is expressed by endothelial cells of the mouse blood-cerebrospinal fluid barrier and of the blood-leptomeningeal barrier, but not by endothelial cells of the blood-spinal cord barrier. Following SCI, newly formed endothelial cells located within the epicenter of the lesion site were found to express CD200L at time points that were shown to be critical for repair. Our results reveal a direct interaction between CD200L+ endothelial cells and CD200R+ microglia and macrophages, resulting in attenuated inflammation, biasing macrophage phenotype toward inflammation-resolving cells, and promotion of functional recovery following SCI.