Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Curr Biol ; 33(5): 791-806.e7, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36693370

RESUMO

Centrosomes are cellular structures that nucleate microtubules. At their core is a pair of centrioles that recruit pericentriolar material (PCM). Although centrosomes are considered membraneless organelles, in many cell types, including human cells, centrosomes are surrounded by endoplasmic reticulum (ER)-derived membranes of unknown structure and function. Using volume electron microscopy (vEM), we show that centrosomes in the Caenorhabditis elegans (C. elegans) early embryo are surrounded by a three-dimensional (3D), ER-derived membrane reticulum that we call the centriculum, for centrosome-associated membrane reticulum. The centriculum is adjacent to the nuclear envelope in interphase and early mitosis and fuses with the fenestrated nuclear membrane at metaphase. Centriculum formation is dependent on the presence of an underlying centrosome and on microtubules. Conversely, increasing centriculum size by genetic means led to the expansion of the PCM, increased microtubule nucleation capacity, and altered spindle width. The effect of the centriculum on centrosome function suggests that in the C. elegans early embryo, the centrosome is not membraneless. Rather, it is encased in a membrane meshwork that affects its properties. We provide evidence that the centriculum serves as a microtubule "filter," preventing the elongation of a subset of microtubules past the centriculum. Finally, we propose that the fusion between the centriculum and the nuclear membrane contributes to nuclear envelope breakdown by coupling spindle elongation to nuclear membrane fenestration.


Assuntos
Caenorhabditis elegans , Centrossomo , Animais , Humanos , Caenorhabditis elegans/genética , Centrossomo/metabolismo , Centríolos/metabolismo , Microtúbulos/metabolismo , Mitose , Estresse do Retículo Endoplasmático
2.
G3 (Bethesda) ; 11(11)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34849797

RESUMO

Aberration in nuclear morphology is one of the hallmarks of cellular transformation. However, the processes that, when mis-regulated, result aberrant nuclear morphology are poorly understood. In this study, we carried out a systematic, high-throughput RNAi screen for genes that affect nuclear morphology in Caenorhabditis elegans embryos. The screen employed over 1700 RNAi constructs against genes required for embryonic viability. Nuclei of early embryos are typically spherical, and their NPCs are evenly distributed. The screen was performed on early embryos expressing a fluorescently tagged component of the nuclear pore complex (NPC), allowing visualization of nuclear shape as well as the distribution of NPCs around the nuclear envelope. Our screen uncovered 182 genes whose downregulation resulted in one or more abnormal nuclear phenotypes, including multiple nuclei, micronuclei, abnormal nuclear shape, anaphase bridges, and abnormal NPC distribution. Many of these genes fall into common functional groups, including some that were not previously known to affect nuclear morphology, such as genes involved in mitochondrial function, the vacuolar ATPase, and the CCT chaperonin complex. The results of this screen add to our growing knowledge of processes that affect nuclear morphology and that may be altered in cancer cells that exhibit abnormal nuclear shape.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Interferência de RNA
3.
Curr Biol ; 31(18): R1077-R1079, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34582813

RESUMO

Nuclear shape and size depend on nuclear membrane availability through an unknown process. A new study of asymmetric cell division reveals that nuclear membrane is derived from the endoplasmic reticulum and that limiting nuclear membrane expansion can affect cell fate.


Assuntos
Núcleo Celular , Membrana Nuclear , Divisão Celular Assimétrica , Retículo Endoplasmático
4.
Bio Protoc ; 11(7): e3981, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33889675

RESUMO

The free-living nematode Caenorhabditis elegans is a popular model system for studying developmental biology. Here we describe a detailed protocol to high-pressure freeze the C. elegans embryo (either ex vivo after dissection, or within the intact worm) followed by quick freeze substitution. Processed samples are suitable for ultrastructural analysis by conventional electron microscopy (EM) or newer volume EM (vEM) approaches such as Focused Ion Beam Scanning Electron Microscopy (FIB-SEM). The ultrastructure of cellular features such as the nuclear envelope, chromosomes, endoplasmic reticulum and mitochondria are well preserved after these experimental procedures and yield accurate 3D models for visualization and analysis ( Chang et al., 2020 ). This protocol was used in the 3D reconstruction of membranes and chromosomes after pronuclear meeting in the C. elegans zygote ( Rahman et al., 2020 ).

5.
Methods Cell Biol ; 162: 223-252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33707014

RESUMO

Rapidly changing features in an intact biological sample are challenging to efficiently trap and image by conventional electron microscopy (EM). For example, the model organism C. elegans is widely used to study embryonic development and differentiation, yet the fast kinetics of cell division makes the targeting of specific developmental stages for ultrastructural study difficult. We set out to image the condensed metaphase chromosomes of an early embryo in the intact worm in 3-D. To achieve this, one must capture this transient structure, then locate and subsequently image the corresponding volume by EM in the appropriate context of the organism, all while minimizing a variety of artifacts. In this methodological advance, we report on the high-pressure freezing of spatially constrained whole C. elegans hermaphrodites in a combination of cryoprotectants to identify embryonic cells in metaphase by in situ cryo-fluorescence microscopy. The screened worms were then freeze substituted, resin embedded and further prepared such that the targeted cells were successfully located and imaged by focused ion beam scanning electron microscopy (FIB-SEM). We reconstructed the targeted metaphase structure and also correlated an intriguing punctate fluorescence signal to a H2B-enriched putative polar body autophagosome in an adjacent cell undergoing telophase. By enabling cryo-fluorescence microscopy of thick samples, our workflow can thus be used to trap and image transient structures in C. elegans or similar organisms in a near-native state, and then reconstruct their corresponding cellular architectures at high resolution and in 3-D by correlative volume EM.


Assuntos
Caenorhabditis elegans , Imageamento Tridimensional , Animais , Microscopia Crioeletrônica , Congelamento , Microscopia Eletrônica , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
6.
Methods Mol Biol ; 2150: 11-23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30989507

RESUMO

The maintenance of many adult tissues depends on stem cell systems, which must balance proliferation and differentiation. To understand the properties of adult stem cell systems, one powerful tool is visualization of the cell dynamics in vivo. Here we describe a protocol to track cells in the germline progenitor zone (which includes germline stem cells) in live C. elegans adult worms. Tracking is achieved by using a genetically encoded photoconvertible fluorescent protein, where photoconversion is used to mark cells of interest and their descendants. Individual worms are immobilized, the cells of interest are selected for photoconversion, and the worms are then recovered to plates and imaged at later timepoints. This allows longitudinal studies of individual worms, providing valuable information regarding germline stem cell dynamics.


Assuntos
Caenorhabditis elegans/citologia , Rastreamento de Células/métodos , Células Germinativas/citologia , Luz , Animais , Imageamento Tridimensional , Microesferas , Sefarose , Soluções
7.
J Cell Biol ; 219(2)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31834351

RESUMO

After fertilization, parental genomes are enclosed in two separate pronuclei. In Caenorhabditis elegans, and possibly other organisms, when the two pronuclei first meet, the parental genomes are separated by four pronuclear membranes. To understand how these membranes are breached to allow merging of parental genomes we used focused ion beam scanning electron microscopy (FIB-SEM) to study the architecture of the pronuclear membranes at nanometer-scale resolution. We find that at metaphase, the interface between the two pronuclei is composed of two membranes perforated by fenestrations ranging from tens of nanometers to several microns in diameter. The parental chromosomes come in contact through one of the large fenestrations. Surrounding this fenestrated, two-membrane region is a novel membrane structure, a three-way sheet junction, where the four membranes of the two pronuclei fuse and become two. In the plk-1 mutant, where parental genomes fail to merge, these junctions are absent, suggesting that three-way sheet junctions are needed for formation of a diploid genome.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Membrana Celular/genética , Núcleo Celular/genética , Mitose/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestrutura , Membrana Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Cromossomos/genética , Fertilização/genética , Genoma/genética , Microscopia Eletrônica de Varredura
8.
Dev Cell ; 49(1): 3-5, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965034

RESUMO

In mononucleated cells, nuclear size scales with cell size, but does this relationship extend to multinucleated cells? In this issue of Developmental Cell,Windner et al. (2019) examine scaling of nuclei in multinucleated Drosophila muscle fibers and identify global and local cellular inputs that contribute to nuclear size regulation.


Assuntos
Núcleo Celular , Fibras Musculares Esqueléticas , Animais , Drosophila , Células Gigantes
9.
Mol Biol Cell ; 30(1): 131-145, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30379612

RESUMO

Most cells exhibit a constant ratio between nuclear and cell volume. The mechanism dictating this constant ratio and the nuclear component(s) that scale with cell size are not known. To address this, we examined the consequences to the size and shape of the budding yeast nucleus when cell expansion is inhibited by down-regulating components of the secretory pathway. We find that under conditions where cell size increase is restrained, the nucleus becomes bilobed, with the bulk of the DNA in one lobe and the nucleolus in the other. The formation of bilobed nuclei is dependent on fatty acid and phospholipid synthesis, suggesting that it is associated with nuclear membrane expansion. Bilobed nuclei appeared predominantly after spindle pole body separation, suggesting that nuclear envelope expansion follows cell-cycle cues rather than cell size. Importantly, cells with bilobed nuclei had the same nuclear:cell volume ratio as cells with round nuclei. Therefore, the bilobed nucleus could be a consequence of continued NE expansion as cells traverse the cell cycle without an accompanying increase in nuclear volume due to the inhibition of cell growth. Our data suggest that nuclear volume is not determined by nuclear envelope availability but by one or more nucleoplasmic factors.


Assuntos
Tamanho do Núcleo Celular , Membrana Nuclear/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Ciclo Celular/efeitos dos fármacos , Tamanho do Núcleo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cicloeximida/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Fluorescência , Mutação/genética , Membrana Nuclear/efeitos dos fármacos , Fenótipo , Fosfolipídeos/biossíntese , Saccharomycetales/citologia , Saccharomycetales/efeitos dos fármacos , Via Secretória/efeitos dos fármacos , Tomografia
10.
Dev Biol ; 423(2): 93-100, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28215939

RESUMO

The C. elegans adult hermaphrodite contains a renewable pool of mitotically dividing germ cells that are contained within the progenitor zone (PZ), at the distal region of the germline. From the PZ, cells enter meiosis and differentiate, ensuring the continued production of oocytes. In this study, we investigated the proliferation strategy used to maintain the PZ pool by using a photoconvertible marker to follow the fate of selected germ cells and their descendants in live worms. We found that the most distal pool of 6-8 rows of cells in the PZ (the distal third) behave similarly, with a fold expansion corresponding to one cell division every 6h on average. Proximal to this region, proliferation decreases, and by the proximal third of the PZ, most cells have stopped dividing. In addition, we show that all the descendants of cells in rows 3 and above move proximally and leave the PZ over time. Combining our data with previous studies, we propose a stochastic model for the C. elegans PZ proliferation, where a pool of proliferating stem cells divide symmetrically within the distal most 6-8 rows of the germline and exit from this stem cell niche occurs by displacement due to competition for limited space.


Assuntos
Envelhecimento/fisiologia , Caenorhabditis elegans/citologia , Células Germinativas/citologia , Imageamento Tridimensional , Modelos Biológicos , Células-Tronco/citologia , Animais , Ciclo Celular , Linhagem da Célula , Movimento Celular , Proliferação de Células , Embrião não Mamífero/citologia , Processos Estocásticos
11.
Genetics ; 205(1): 25-59, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049702

RESUMO

Studies on the Caenorhabditis elegans nucleus have provided fascinating insight to the organization and activities of eukaryotic cells. Being the organelle that holds the genetic blueprint of the cell, the nucleus is critical for basically every aspect of cell biology. The stereotypical development of C. elegans from a one cell-stage embryo to a fertile hermaphrodite with 959 somatic nuclei has allowed the identification of mutants with specific alterations in gene expression programs, nuclear morphology, or nuclear positioning. Moreover, the early C. elegans embryo is an excellent model to dissect the mitotic processes of nuclear disassembly and reformation with high spatiotemporal resolution. We review here several features of the C. elegans nucleus, including its composition, structure, and dynamics. We also discuss the spatial organization of chromatin and regulation of gene expression and how this depends on tight control of nucleocytoplasmic transport. Finally, the extensive connections of the nucleus with the cytoskeleton and their implications during development are described. Most processes of the C. elegans nucleus are evolutionarily conserved, highlighting the relevance of this powerful and versatile model organism to human biology.


Assuntos
Caenorhabditis elegans/fisiologia , Núcleo Celular/fisiologia , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
13.
J Cell Physiol ; 231(11): 2353-60, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26909870

RESUMO

In eukaryotes, the nuclear envelope (NE) physically separates nuclear components and activities from rest of the cell. The NE also provides rigidity to the nucleus and contributes to chromosome organization. At the same time, the NE is highly dynamic; it must change shape and rearrange its components during development and throughout the cell cycle, and its morphology can be altered in response to mutation and disease. Here we focus on the NE of budding yeast, Saccharomyces cerevisiae, which has several unique features: it remains intact throughout the cell cycle, expands symmetrically during interphase, elongates during mitosis and, expands asymmetrically during mitotic delay. Moreover, its NE is safely breached during mating and when large structures, such as nuclear pore complexes and the spindle pole body, are embedded into its double membrane. The budding yeast NE lacks lamins and yet the nucleus is capable of maintaining a spherical shape throughout interphase. Despite these eccentricities, studies of the budding yeast NE have uncovered interesting, and likely conserved, processes that contribute to NE dynamics. In particular, we discuss the processes that drive and enable NE expansion and the dramatic changes in the NE that lead to extensions and fenestrations. J. Cell. Physiol. 231: 2353-2360, 2016. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Fusão de Membrana , Membrana Nuclear/metabolismo , Saccharomycetales/metabolismo , Autofagia , Ciclo Celular , Modelos Biológicos , Saccharomycetales/citologia
14.
Mol Biol Cell ; 26(25): 4718-35, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26490119

RESUMO

Before the first zygotic division, the nuclear envelopes of the maternal and paternal pronuclei disassemble, allowing both sets of chromosomes to be incorporated into a single nucleus in daughter cells after mitosis. We found that in Caenorhabditis elegans, partial inactivation of the polo-like kinase PLK-1 causes the formation of two nuclei, containing either the maternal or paternal chromosomes, in each daughter cell. These two nuclei gave rise to paired nuclei in all subsequent cell divisions. The paired-nuclei phenotype was caused by a defect in forming a gap in the nuclear envelopes at the interface between the two pronuclei during the first mitotic division. This was accompanied by defects in chromosome congression and alignment of the maternal and paternal metaphase plates relative to each other. Perturbing chromosome congression by other means also resulted in failure to disassemble the nuclear envelope between the two pronuclei. Our data further show that PLK-1 is needed for nuclear envelope breakdown during early embryogenesis. We propose that during the first zygotic division, PLK-1-dependent chromosome congression and metaphase plate alignment are necessary for the disassembly of the nuclear envelope between the two pronuclei, ultimately allowing intermingling of the maternal and paternal chromosomes.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Nucléolo Celular/genética , Desenvolvimento Embrionário/genética , Mitose/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Caenorhabditis elegans/genética , Segregação de Cromossomos/genética , Genoma , Meiose/genética , Membrana Nuclear/genética
15.
Curr Biol ; 24(23): 2861-7, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25454593

RESUMO

Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompasses the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Proteínas de Ciclo Celular/genética , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Segregação de Cromossomos , DNA Ribossômico/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/metabolismo
16.
Proc Natl Acad Sci U S A ; 111(7): 2602-7, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550289

RESUMO

The cell cycle is a highly regulated process that enables the accurate transmission of chromosomes to daughter cells. Here we uncover a previously unknown link between the tricarboxylic acid (TCA) cycle and cell cycle progression in the Caenorhabditis elegans early embryo. We found that down-regulation of TCA cycle components, including citrate synthase, malate dehydrogenase, and aconitase, resulted in a one-cell stage arrest before entry into mitosis: pronuclear meeting occurred normally, but nuclear envelope breakdown, centrosome separation, and chromosome condensation did not take place. Mitotic entry is controlled by the cyclin B-cyclin-dependent kinase 1 (Cdk1) complex, and the inhibitory phosphorylation of Cdk1 must be removed in order for the complex to be active. We found that following down-regulation of the TCA cycle, cyclin B levels were normal but CDK-1 remained inhibitory-phosphorylated in one-cell stage-arrested embryos, indicative of a G2-like arrest. Moreover, this was not due to an indirect effect caused by checkpoint activation by DNA damage or replication defects. These observations suggest that CDK-1 activation in the C. elegans one-cell embryo is sensitive to the metabolic state of the cell, and that down-regulation of the TCA cycle prevents the removal of CDK-1 inhibitory phosphorylation. The TCA cycle was previously shown to be necessary for the development of the early embryo in mammals, but the molecular processes affected were not known. Our study demonstrates a link between the TCA cycle and a specific cell cycle transition in the one-cell stage embryo.


Assuntos
Caenorhabditis elegans/embriologia , Ciclo do Ácido Cítrico/genética , Regulação para Baixo/fisiologia , Mitose/fisiologia , Animais , Proteína Quinase CDC2/metabolismo , Divisão Celular/fisiologia , Imunofluorescência , Microscopia Confocal , Mitose/genética , Fosforilação , Interferência de RNA , Imagem com Lapso de Tempo
17.
Curr Opin Cell Biol ; 26: 79-86, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24529249

RESUMO

The cell interior is a busy and crowded place. A large fraction of the cell volume is taken up by organelles that come in a variety of shapes and sizes. These organelles are surrounded by membrane that not only acts as a diffusion barrier, but also provides each organelle with its unique morphology that contributes to its function, often in ways that are poorly understood. Here we discuss recent discoveries on the relationship between organelle structure and function.


Assuntos
Membrana Celular/química , Organelas/química , Adaptação Biológica , Animais , Membrana Celular/metabolismo , Mitose , Organelas/metabolismo , Estresse Fisiológico
18.
J Cell Biochem ; 115(2): 209-16, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23966233

RESUMO

Each class of microscope is limited to imaging specific aspects of cell structure and/or molecular organization. However, imaging the specimen by complementary microscopes and correlating the data can overcome this limitation. Whilst not a new approach, the field of correlative imaging is currently benefitting from the emergence of new microscope techniques. Here we describe the correlation of cryogenic fluorescence tomography (CFT) with soft X-ray tomography (SXT). This amalgamation of techniques integrates 3D molecular localization data (CFT) with a high-resolution, 3D cell reconstruction of the cell (SXT). Cells are imaged in both modalities in a near-native, cryopreserved state. Here we describe the current state of the art in correlative CFT-SXT, and discuss the future outlook for this method.


Assuntos
Imageamento Tridimensional , Microscopia de Fluorescência/métodos , Tomografia por Raios X/métodos , Leveduras/ultraestrutura , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência/tendências , Estatística como Assunto , Tomografia por Raios X/tendências
19.
Curr Biol ; 23(23): R1045-7, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24309281

RESUMO

How do nuclear components, apart from chromosomes, partition equally to daughter nuclei during mitosis? In Schizosaccharomyces japonicus, the conserved LEM-domain nuclear envelope protein Man1 ensures the formation of identical daughter nuclei by coupling nuclear pore complexes to the segregating chromosomes.


Assuntos
Divisão do Núcleo Celular/genética , Estruturas do Núcleo Celular/genética , Segregação de Cromossomos/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Schizosaccharomyces/genética , Cromossomos/genética , Mitose , Poro Nuclear/genética , Proteínas de Schizosaccharomyces pombe/genética
20.
Nucleus ; 4(4): 261-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23873576

RESUMO

In eukaryotes, chromosomes are encased by a dynamic nuclear envelope. In contrast to metazoans, where the nuclear envelope disassembles during mitosis, many fungi including budding yeast undergo "closed mitosis," where the nuclear envelope remains intact throughout the cell cycle. Consequently, during closed mitosis the nuclear envelope must expand to accommodate chromosome segregation to the two daughter cells. A recent study by Witkin et al. in budding yeast showed that if progression through mitosis is delayed, for example due to checkpoint activation, the nuclear envelope continues to expand despite the block to chromosome segregation. Moreover, this expansion occurs at a specific region of the nuclear envelope- adjacent to the nucleolus- forming an extension referred to as a "flare." These observations raise questions regarding the regulation of nuclear envelope expansion both in budding yeast and in higher eukaryotes, the mechanisms confining mitotic nuclear envelope expansion to a particular region and the possible consequences of failing to regulate nuclear envelope expansion during the cell cycle.


Assuntos
Núcleo Celular/metabolismo , Mitose , Membrana Nuclear/metabolismo , Animais , Humanos , Mitose/genética , Membrana Nuclear/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA