RESUMO
Exposure to environmental chemicals can impair neurodevelopment, and oligodendrocytes may be particularly vulnerable, as their development extends from gestation into adulthood. However, few environmental chemicals have been assessed for potential risks to oligodendrocytes. Here, using a high-throughput developmental screen in cultured cells, we identified environmental chemicals in two classes that disrupt oligodendrocyte development through distinct mechanisms. Quaternary compounds, ubiquitous in disinfecting agents and personal care products, were potently and selectively cytotoxic to developing oligodendrocytes, whereas organophosphate flame retardants, commonly found in household items such as furniture and electronics, prematurely arrested oligodendrocyte maturation. Chemicals from each class impaired oligodendrocyte development postnatally in mice and in a human 3D organoid model of prenatal cortical development. Analysis of epidemiological data showed that adverse neurodevelopmental outcomes were associated with childhood exposure to the top organophosphate flame retardant identified by our screen. This work identifies toxicological vulnerabilities for oligodendrocyte development and highlights the need for deeper scrutiny of these compounds' impacts on human health.
Assuntos
Oligodendroglia , Oligodendroglia/efeitos dos fármacos , Animais , Camundongos , Humanos , Retardadores de Chama/toxicidade , Feminino , Células Cultivadas , Diferenciação Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Poluentes Ambientais/toxicidadeRESUMO
Disease, injury and aging induce pathological reactive astrocyte states that contribute to neurodegeneration. Modulating reactive astrocytes therefore represent an attractive therapeutic strategy. Here we describe the development of an astrocyte phenotypic screening platform for identifying chemical modulators of astrocyte reactivity. Leveraging this platform for chemical screening, we identify histone deacetylase 3 (HDAC3) inhibitors as effective suppressors of pathological astrocyte reactivity. We demonstrate that HDAC3 inhibition reduces molecular and functional characteristics of reactive astrocytes in vitro. Transcriptional and chromatin mapping studies show that HDAC3 inhibition disarms pathological astrocyte gene expression and function while promoting the expression of genes associated with beneficial astrocytes. Administration of RGFP966, a small molecule HDAC3 inhibitor, blocks reactive astrocyte formation and promotes neuroprotection in vivo in mice. Collectively, these results establish a platform for discovering modulators of reactive astrocyte states, inform the mechanisms that control astrocyte reactivity and demonstrate the therapeutic benefits of modulating astrocyte reactivity for neurodegenerative diseases.
Assuntos
Astrócitos , Doenças Neurodegenerativas , Camundongos , Animais , Astrócitos/metabolismo , Doenças Neurodegenerativas/metabolismo , Envelhecimento/metabolismo , Sistema Nervoso CentralRESUMO
Enteric glia are the predominant cell type in the enteric nervous system yet their identities and roles in gastrointestinal function are not well classified. Using our optimized single nucleus RNA-sequencing method, we identified distinct molecular classes of enteric glia and defined their morphological and spatial diversity. Our findings revealed a functionally specialized biosensor subtype of enteric glia that we call "hub cells." Deletion of the mechanosensory ion channel PIEZO2 from adult enteric glial hub cells, but not other subtypes of enteric glia, led to defects in intestinal motility and gastric emptying in mice. These results provide insight into the multifaceted functions of different enteric glial cell subtypes in gut health and emphasize that therapies targeting enteric glia could advance the treatment of gastrointestinal diseases.
RESUMO
Metastatic spinal melanoma is a rare and aggressive disease process with poor prognosis. We review the literature on metastatic spinal melanoma, focusing on its epidemiology, management, and treatment outcomes. Demographics of metastatic spinal melanoma are similar to those for cutaneous melanoma, and cutaneous primary tumors tend to be most common. Decompressive surgical intervention and radiotherapy have traditionally been considered mainstays of treatment, and stereotactic radiosurgery has emerged as a promising approach in the operative management of metastatic spinal melanoma. While survival outcomes for metastatic spinal melanoma remain poor, they have improved in recent years with the advent of immune checkpoint inhibition, used in conjunction with surgery and radiotherapy. New treatment options remain under investigation, especially for patients with disease refractory to immunotherapy. We additionally explore several of these promising future directions. Nevertheless, further investigation of treatment outcomes, ideally incorporating high-quality prospective data from randomized controlled trials, is needed to identify optimal management of metastatic spinal melanoma.
RESUMO
Exposure to environmental chemicals can impair neurodevelopment1-4. Oligodendrocytes that wrap around axons to boost neurotransmission may be particularly vulnerable to chemical toxicity as they develop throughout fetal development and into adulthood5,6. However, few environmental chemicals have been assessed for potential risks to oligodendrocyte development. Here, we utilized a high-throughput developmental screen and human cortical brain organoids, which revealed environmental chemicals in two classes that disrupt oligodendrocyte development through distinct mechanisms. Quaternary compounds, ubiquitous in disinfecting agents, hair conditioners, and fabric softeners, were potently and selectively cytotoxic to developing oligodendrocytes through activation of the integrated stress response. Organophosphate flame retardants, commonly found in household items such as furniture and electronics, were non-cytotoxic but prematurely arrested oligodendrocyte maturation. Chemicals from each class impaired human oligodendrocyte development in a 3D organoid model of prenatal cortical development. In analysis of epidemiological data from the CDC's National Health and Nutrition Examination Survey, adverse neurodevelopmental outcomes were associated with childhood exposure to the top organophosphate flame retardant identified by our oligodendrocyte toxicity platform. Collectively, our work identifies toxicological vulnerabilities specific to oligodendrocyte development and highlights common household chemicals with high exposure risk to children that warrant deeper scrutiny for their impact on human health.
RESUMO
Mammalian cells respond to insufficient oxygen through transcriptional regulators called hypoxia-inducible factors (HIFs). Although transiently protective, prolonged HIF activity drives distinct pathological responses in different tissues. Using a model of chronic HIF1a accumulation in pluripotent-stem-cell-derived oligodendrocyte progenitors (OPCs), we demonstrate that HIF1a activates non-canonical targets to impair generation of oligodendrocytes from OPCs. HIF1a activated a unique set of genes in OPCs through interaction with the OPC-specific transcription factor OLIG2. Non-canonical targets, including Ascl2 and Dlx3, were sufficient to block differentiation through suppression of the oligodendrocyte regulator Sox10. Chemical screening revealed that inhibition of MEK/ERK signaling overcame the HIF1a-mediated block in oligodendrocyte generation by restoring Sox10 expression without affecting canonical HIF1a activity. MEK/ERK inhibition also drove oligodendrocyte formation in hypoxic regions of human oligocortical spheroids. This work defines mechanisms by which HIF1a impairs oligodendrocyte formation and establishes that cell-type-specific HIF1a targets perturb cell function in response to low oxygen.
Assuntos
Células Precursoras de Oligodendrócitos , Células-Tronco Pluripotentes , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Células Cultivadas , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , OligodendrogliaRESUMO
Oxygen-sensitive proteins, including those enzymes which utilize oxygen as a substrate, can have reduced stability when purified using traditional aerobic purification methods. This manuscript illustrates the technical details involved in the anaerobic purification process, including the preparation of buffers and reagents, the methods for column chromatography in a glove box, and the desalting of the protein prior to kinetics. Also described are the methods for preparing and using an oxygen electrode to perform kinetic characterization of an oxygen-utilizing enzyme. These methods are illustrated using the dioxygenase enzyme DesB, a gallate dioxygenase from the bacterium Sphingobium sp. strain SYK-6.
Assuntos
Dioxigenases/antagonistas & inibidores , Dioxigenases/metabolismo , Inibidores Enzimáticos/farmacologia , Oxigênio/metabolismo , Anaerobiose , Reatores Biológicos/microbiologia , Dioxigenases/isolamento & purificação , Eletrodos , Cinética , Oxirredução , Sphingomonadaceae/enzimologia , Sphingomonadaceae/metabolismo , Especificidade por SubstratoRESUMO
Flux through kinase and ubiquitin-driven signaling systems depends on the modification kinetics, stoichiometry, primary site specificity, and target abundance within the pathway, yet we rarely understand these parameters and their spatial organization within cells. Here we develop temporal digital snapshots of ubiquitin signaling on the mitochondrial outer membrane in embryonic stem cell-derived neurons, and we model HeLa cell systems upon activation of the PINK1 kinase and PARKIN ubiquitin ligase by proteomic counting of ubiquitylation and phosphorylation events. We define the kinetics and site specificity of PARKIN-dependent target ubiquitylation, and we demonstrate the power of this approach to quantify pathway modulators and to mechanistically define the role of PARKIN UBL phosphorylation in pathway activation in induced neurons. Finally, through modulation of pS65-Ub on mitochondria, we demonstrate that Ub hyper-phosphorylation is inhibitory to mitophagy receptor recruitment, indicating that pS65-Ub stoichiometry in vivo is optimized to coordinate PARKIN recruitment via pS65-Ub and mitophagy receptors via unphosphorylated chains.