Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
NanoImpact ; 35: 100517, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848992

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have gained significant attention in biomedical research due to their potential applications. However, little is known about their impact and toxicity on testicular cells. To address this issue, we conducted an in vitro study using primary mouse testicular cells, testis fragments, and sperm to investigate the cytotoxic effects of sodium citrate-coated SPIONs (Cit_SPIONs). Herein, we synthesized and physiochemically characterized the Cit_SPIONs and observed that the sodium citrate diminished the size and improved the stability of nanoparticles in solution during the experimental time. The sodium citrate (measured by thermogravimetry) was biocompatible with testicular cells at the used concentration (3%). Despite these favorable physicochemical properties, the in vitro experiments demonstrated the cytotoxicity of Cit_SPIONs, particularly towards testicular somatic cells and sperm cells. Transmission electron microscopy analysis confirmed that Leydig cells preferentially internalized Cit_SPIONs in the organotypic culture system, which resulted in alterations in their cytoplasmic size. Additionally, we found that Cit_SPIONs exposure had detrimental effects on various parameters of sperm cells, including motility, viability, DNA integrity, mitochondrial activity, lipid peroxidation (LPO), and ROS production. Our findings suggest that testicular somatic cells and sperm cells are highly sensitive and vulnerable to Cit_SPIONs and induced oxidative stress. This study emphasizes the potential toxicity of SPIONs, indicating significant threats to the male reproductive system. Our findings highlight the need for detailed development of iron oxide nanoparticles to enhance reproductive nanosafety.

2.
Reprod Toxicol ; 126: 108584, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561096

RESUMO

In the domain of medical advancement, nanotechnology plays a pivotal role, especially in the synthesis of biocompatible materials for therapeutic use. Superparamagnetic Iron Oxide Nanoparticles (SPIONs), known for their magnetic properties and low toxicity, stand at the forefront of this innovation. This study explored the reproductive toxicological effects of Sodium Citrate-functionalized SPIONs (Cit_SPIONs) in adult male mice, an area of research that holds significant potential yet remains largely unknown. Our findings reveal that Cit_SPIONs induce notable morphological changes in interstitial cells and the seminiferous epithelium when introduced via intratesticular injection. This observation is critical in understanding the interactions of nanomaterials within reproductive biological systems. A striking feature of this study is the rapid localization of Cit_SPIONs in Leydig cells post-injection, a factor that appears to be closely linked with the observed decrease in steroidogenic activity and testosterone levels. This data suggests a possible application in developing nanostructured therapies targeting androgen-related processes. Over 56 days, these nanoparticles exhibited remarkable biological distribution in testis parenchyma, infiltrating various cells within the tubular and intertubular compartments. While the duration of spermatogenesis remained unchanged, there were many Tunel-positive germ cells, a notable reduction in daily sperm production, and reduced progressive sperm motility in the treated group. These insights not only shed light on the intricate mechanisms of Cit_SPIONs interaction with the male reproductive system but also highlight the potential of nanotechnology in developing advanced biomedical applications.


Assuntos
Células Intersticiais do Testículo , Nanopartículas Magnéticas de Óxido de Ferro , Espermatogênese , Espermatozoides , Testículo , Testosterona , Animais , Masculino , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Testículo/efeitos dos fármacos , Testículo/metabolismo , Espermatogênese/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Camundongos , Citrato de Sódio/toxicidade
3.
Toxicology ; 492: 153543, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37150288

RESUMO

This study aimed to evaluate the gold nanoparticles (AuNPs) animal sterilizing potential after intratesticular injections and long-term adverse reproductive and systemic effects. Adult male Wistar rats were divided into control and gold nanoparticle (AuNPs) groups. The rats received 200 µL of saline or AuNPs solution (16 µg/mL) on experimental days 1 and 7 (ED1 and ED7). After 150 days, the testicular blood flow was measured, and the rats were mated with females. After mating, male animals were euthanized for histological, cellular, and molecular evaluations. The female fertility indices and fetal development were also recorded. The results indicated increased blood flow in the testes of treated animals. Testes from treated rats had histological abnormalities, shorter seminiferous epithelia, and oxidative stress. Although the sperm concentration was lower in the AuNP-treated rats, there were no alterations in sperm morphology. Animals exposed to AuNPs had decreased male fertility indices, and their offspring had lighter and less efficient placentas. Additionally, the anogenital distance was longer in female fetuses. There were no changes in the histology of the kidney and liver, the lipid profile, and the serum levels of LH, testosterone, AST, ALT, ALP, albumin, and creatinine. The primary systemic effect was an increase in MDA levels in the liver and kidney, with only the liver experiencing an increase in CAT activity. In conclusion, AuNPs have a long-term impact on reproduction with very slight alterations in animal health. The development of reproductive biotechnologies that eliminate germ cells or treat local cancers can benefit from using AuNPs.


Assuntos
Ouro , Nanopartículas Metálicas , Gravidez , Masculino , Feminino , Ratos , Animais , Ouro/toxicidade , Ratos Wistar , Nanopartículas Metálicas/toxicidade , Sêmen , Reprodução , Testículo , Testosterona , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Espermatozoides
4.
Environ Toxicol ; 38(5): 1162-1173, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36757007

RESUMO

Arsenic is an environmental toxicant known to be a carcinogen and endocrine disruptor. Maternal exposure to arsenic has been associated with fetus malformation and reproductive disorders in male offspring. However, it is unclear the extent to which those effects remain during postnatal development and adulthood. Therefore, this study aimed to investigate the long-term effects of prenatal arsenic exposure on reproductive parameters of male offspring at peripubertal and adult periods. Pregnant female Wistar rats were exposed to 0 or 10 mg/L sodium arsenite in drinking water from gestational day 1 (GD 1) until GD 21 and male pups were analyzed at postnatal day 44 (PND 44) and PND 70. We observed that some reproductive parameters were affected differently by arsenic exposure at each age evaluated. The body and reproductive organs weights, as well as testicular and epididymal morphology were strongly affected in peripubertal animals and recovered at adult period. On the other hand, the antioxidant genes expression (SOD1, SOD2, CAT and GSTK1) and the endogenous antioxidant system were affected in the testes and epididymides from both peripubertal and adult rats. Finally, an impairment in daily sperm production and in sperm parameters was observed in adult animals. Taken together, our findings show that prenatal arsenic exposure affected reproductive parameters of peripubertal and adult male rats mainly due to oxidative stress. Collectively, those alterations may be affecting fertility potential of adult animals.


Assuntos
Arsênio , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Ratos , Masculino , Animais , Feminino , Ratos Wistar , Sêmen , Reprodução , Testículo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA