Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612195

RESUMO

A new Mg-Zn-Zr-Ca alloy in a powder state, intended to be used for custom shaped implants, was obtained via a mechanical alloying method from pure elemental powder. Further, the obtained powder alloy was processed by a PBF-LB/M (powder bed fusion with laser beam/of metal) procedure to obtain additive manufactured samples for small biodegradable implants. A series of microstructural, mechanical and corrosion analyses were performed. The SEM (scanning electron microscopy) analysis of the powder alloy revealed a good dimensional homogeneity, with a uniform colour, no agglutination and almost rounded particles, suitable for the powder bed fusion procedure. Further, the PBF-LB/M samples revealed a robust and unbreakable morphology, with a suitable porosity (that can reproduce that of cortical bone) and without an undesirable balling effect. The tested Young's modulus of the PBF-LB/M samples, which was 42 GPa, is close to that of cortical bone, 30 GPa. The corrosion tests that were performed in PBS (Phosphate-buffered saline) solution, with three different pH values, show that the corrosion parameters have a satisfactory evolution comparative to the commercial ZK 60 alloy.

2.
Materials (Basel) ; 16(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37959635

RESUMO

Alloys with superior properties represent the main topic of recent studies due to their effectiveness in reducing the cost of equipment maintenance and enhancing usage time, in addition to other benefits in domains such as geothermal, marine, and airspace. Al0.5CrFeNiTi was produced by solid state processing in a planetary ball mill, with the objective of obtaining a high alloying degree and a homogenous composition that could be further processed by pressing and sintering. The metallic powder was technologically characterized, indicating a particle size reduction following mechanical alloying processing when compared to the elemental raw powder materials. The microstructural analysis presented the evolution of the alloying degree during milling but also a compact structure with no major defects in the pressed and sintered bulk samples. The X-ray diffraction results confirmed the presence of face-centered cubic (FCC) and body-centered cubic (BCC) phases, predicted by the theoretical calculations, along with a hexagonal close-packed (HCP) phase, where the Al, Cr, Fe, Ni, and Ti phase was identified in both the alloyed powder material and sintered sample.

3.
Materials (Basel) ; 16(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834657

RESUMO

High-entropy alloys (HEAs) gained interest in the field of biomedical applications due to their unique effects and to the combination of the properties of the constituent elements. In addition to the required property of biocompatibility, other requirements include properties such as mechanical resistance, bioactivity, sterility, stability, cost effectiveness, etc. For this paper, a biocompatible high-entropy alloy, defined as bio-HEA by the literature, can be considered as an alternative to the market-available materials due to their superior properties. According to the calculation of the valence electron concentration, a majority of body-centered cubic (BCC) phases were expected, resulting in properties such as high strength and plasticity for the studied alloy, confirmed by the XRD analysis. The tetragonal (TVC) phase was also identified, indicating that the presence of face-centered cubic (FCC) phases in the alloyed materials resulted in high ductility. Microstructural and compositional analyses revealed refined and uniform metallic powder particles, with a homogeneous distribution of the elemental particles observed from the mapping analyses, indicating that alloying had occurred. The technological characterization of the high-entropy alloy-elaborated powder revealed the particle dimension reduction due to the welding and fracturing process that occurs during mechanical alloying, with a calculated average particle size of 45.12 µm.

4.
J Funct Biomater ; 14(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37623645

RESUMO

The objective of this experimental work was to examine and characterise the route for obtaining demonstrative temporary biodegradable personalised implants from the Mg alloy Mg-10Zn-0.5Zr-0.8Ca (wt.%). This studied Mg alloy was obtained in its powder state using the mechanical alloying method, with shape and size characteristics suitable for ensuing 3D additive manufacturing using the SLM (selective laser melting) procedure. The SLM procedure was applied to various processing parameters. All obtained samples were characterised microstructurally (using XRD-X-ray diffraction, and SEM-scanning electron microscopy); mechanically, by applying a compression test; and, finally, from a corrosion resistance viewpoint. Using the optimal test processing parameters, a few demonstrative temporary implants of small dimensions were made via the SLM method. Our conclusion is that mechanical alloying combined with SLM processing has good potential to manage 3D additive manufacturing for personalised temporary biodegradable implants of magnesium alloys. The compression tests show results closer to those of human bones compared to other potential metallic alloys. The applied corrosion test shows result comparable with that of the commercial magnesium alloy ZK60.

5.
Materials (Basel) ; 15(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36234273

RESUMO

Deformation twinning is a phenomenon that causes local shear strain concentrations, with the material either experiencing elongation (and thus a tensile stress) or contraction (compressive stress) along the stress directions. Thus, in order to gauge the performance of the alloy better, it is imperative to predict the activation of twinning systems successfully. The present study investigates the effects of deformation by cold-rolling on the {332}<113> and {112}<111> twin variant activation in a Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) (TNZTSF) alloy. The Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) alloy was synthesized in a cold crucible induction levitation furnace, under an argon-controlled atmosphere, using high-purity elemental components. The TNZTSF alloy was cold-deformed by rolling, in one single step, with a total deformation degree (thickness reduction) of ε ≈ 1% (CR 1), ε ≈ 3% (CR 3), and ε ≈ 15% (CR 15). The microstructural investigations were carried out with the SEM-EBSD technique in order to determine the grain morphology, grain-size distribution, crystallographic orientation, accumulated strain-stress fields and Schmid Factor (SF) analysis, all necessary to identify the active twin variants. The EBSD data were processed using an MTEX Toolbox ver. 5.7.0 software package. The results indicated that the TNZTSF alloy's initial microstructure consists of a homogeneous ß-Ti single phase that exhibits equiaxed polyhedral grains and an average grain-size close to 71 µm. It was shown that even starting with a 1% total deformation degree, the microstructure shows the presence of the {332}<113> twinning ((233)[3¯11] active twin variant; Schmit factor SF = −0.487); at a 3% total deformation degree, one can notice the presence of primary and secondary twin variants within the same grain belonging to the same {332}<113> twinning system ((323¯)[13¯1¯] primary twin variant­SF = −0.460; (233¯)[3¯11¯] secondary twin variant­SF = −0.451), while, at a 15% total deformation degree, besides the {332}<113> twinning system, one can notice the activation of the {112}<111> twinning system ((11¯2)[1¯11] active twin variant­SF = −0.440). This study shows the {332}<113> and {112}<111> twinning variant activation during cold-deformation by rolling in the case of a Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) (TNZTSF) alloy.

6.
Materials (Basel) ; 15(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35629608

RESUMO

In this study, a Ti-32.9Nb-4.2Zr-7.5Ta (wt%) titanium alloy was produced by melting in a cold crucible induction in a levitation furnace, and then deforming by cold rolling, with progressive deformation degrees (thickness reduction), from 15% to 60%, in 15% increments. The microstructural characteristics of the specimens in as-received and cold-rolled conditions were determined by XRD and SEM microscopy, while the mechanical characteristics were obtained by tensile and microhardness testing. It was concluded that, in all cases, the Ti-32.9Nb-4.2Zr-7.5Ta (wt%) showed a bimodal microstructure consisting of Ti-ß and Ti-α″ phases. Cold deformation induced significant changes in the microstructural and the mechanical properties, leading to grain-refinement, crystalline cell distortions and variations in the weight-fraction ratio of both Ti-ß and Ti-α″ phases, as the applied degree of deformation increased from 15% to 60%. Changes in the mechanical properties were also observed: the strength properties (ultimate tensile strength, yield strength and microhardness) increased, while the ductility properties (fracture strain and elastic modulus) decreased, as a result of variations in the weight-fraction ratio, the crystallite size and the strain hardening induced by the progressive cold deformation in the Ti-ß and Ti-α″ phases.

7.
Materials (Basel) ; 15(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35407893

RESUMO

The aim of the present paper is to apply the laser powder bed fusion process to a new biodegradable Mg-Zn-Zr-Ca alloy powder prepared via a mechanical alloying method from powder pure components. This additive manufacturing method is expected to allow for the obtaining of high biomechanical and biochemical performance. Various processing parameters for laser powder bed fusion are tested, with a special focus on laser energy density-E [J/mm3]-which is calculated for all experiment variants, and which represents an important processing parameter, dependent upon all the rest. The goal of all the trials is to find the most efficient schema for the production of small biodegradable parts for the medical domain, meaning the selection of optimal processing parameters. An important observation is that the most robust and homogeneous samples without cracks are obtained for lower values of the E, around 100 J/mm3. Thus, the most performant samples are analyzed by scanning electron microscopy, X-ray diffraction and by compression mechanical test.

8.
Materials (Basel) ; 14(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206466

RESUMO

The present paper analyzed the microstructural characteristics and the mechanical properties of a Ti-Nb-Zr-Fe-O alloy of ß-Ti type obtained by combining severe plastic deformation (SPD), for which the total reduction was of εtot = 90%, with two variants of super-transus solution treatment (ST). The objective was to obtain a low Young's modulus with sufficient high strength in purpose to use the alloy as a biomaterial for orthopedic implants. The microstructure analysis was conducted through X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) investigations. The analyzed mechanical properties reveal promising values for yield strength (YS) and ultimate tensile strength (UTS) of about 770 and 1100 MPa, respectively, with a low value of Young's modulus of about 48-49 GPa. The conclusion is that satisfactory mechanical properties for this type of alloy can be obtained if considering a proper combination of SPD + ST parameters and a suitable content of ß-stabilizing alloying elements, especially the Zr/Nb ratio.

9.
J Adv Res ; 30: 53-61, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026286

RESUMO

Introduction: Super-Duplex Stainless Steeles (SDSS) proved an excellent potential for its use in many chemical and offshore applications due to their both high mechanical properties and a high corrosion resistance in chloride ion solutions. Objectives: This study evaluates the influence of ageing treatment temperature and duration on σ-phase precipitation and mechanical properties of UNS S32750 SDSS alloy. Methods: The influence of ageing treatment on microstructural features was analysed by SEM-EBSD (Scanning Electron Microscopy - Electron Backscatter Diffraction) technique, while on mechanical properties by tensile and impact testing techniques. Results: The obtained results show that for the short duration ageing treatments the σ-phase nucleates, within the δ-phase matrix, at the δ/γ grains boundary by the δ → σ precipitation, while for long duration ageing treatments the σ-phase nucleates, within the δ-phase matrix, at the δ/δ grains boundary, or in other favourable nucleation sites, due to the eutectoid decomposition δ → σ + γ2. Experimental data showed that at low temperatures, i.e. 780 °C, in order to induce the precipitation of σ-phase, the minimum incubation time is situated close to 20 min, and that increasing treatment temperature decreases the minimum incubation time, with at 850 °C and 920 °C the σ-phase being firstly detected at 5 min. The σ-phase precipitation shows the highest precipitation kinetics at 850 °C, when the maximum weight-fraction is obtained for each treatment duration when compared with ageing treatments performed at 780 °C and 920 °C. Conclusion: All presented data brings valuable insight into the σ-phase precipitation phenomena and its influence on UNS S32750 SDSS alloy's exhibited mechanical properties and, also, can provide researchers and industrial steel processors a guide regarding the selection of optimal ageing treatment parameters to avoid/minimise the embrittlement induced by the precipitation of deleterious σ-phase.

10.
Materials (Basel) ; 10(7)2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28773046

RESUMO

Despite their good biocompatibility and adequate mechanical behavior, the main limitation of Mg alloys might be their high degradation rates in a physiological environment. In this study, a novel Mg-based alloy exhibiting an elastic modulus E = 42 GPa, Mg-1Ca-0.2Mn-0.6Zr, was synthesized and thermo-mechanically processed. In order to improve its performance as a temporary bone implant, a coating based on cellulose acetate (CA) was realized by using the dipping method. The formation of the polymer coating was demonstrated by FT-IR, XPS, SEM and corrosion behavior comparative analyses of both uncoated and CA-coated alloys. The potentiodynamic polarization test revealed that the CA coating significantly improved the corrosion resistance of the Mg alloy. Using a series of in vitro and in vivo experiments, the biocompatibility of both groups of biomaterials was assessed. In vitro experiments demonstrated that the media containing their extracts showed good cytocompatibility on MC3T3-E1 pre-osteoblasts in terms of cell adhesion and spreading, viability, proliferation and osteogenic differentiation. In vivo studies conducted in rats revealed that the intramedullary coated implant for fixation of femur fracture was more efficient in inducing bone regeneration than the uncoated one. In this manner, the present study suggests that the CA-coated Mg-based alloy holds promise for orthopedic aplications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA