Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 194(8): 3677-3688, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35488952

RESUMO

Generation of novel and versatile immunomodulatory agents that could suppress excessive inflammation has been crucial to fight against chronic inflammatory and autoimmune disorders. Immunomodulatory agents regulate the function of immune system cells to manage their activities. Current therapy regimens for the inflammatory and autoimmune disorders rely on immunomodulatory drug molecules but they are also associated with unwanted and severe side effects. In order to prevent the side effects associated with drug molecules, the field should generate novel immunomodulatory drug candidates and further test them. Moreover, the generation of photodynamic immunomodulatory molecules would also decrease possible side effects. Photodynamic activation enables specific and localized activation of the active ingredients upon exposure to a certain wavelength of light. In our study, we generated copper-based chalcogenide structures in gel and nanoparticle form by using a water-based method so that they are more biocompatible.After their chemical characterization, they were tested on mammalian macrophages in vitro. Our results suggest that these molecules were anti-inflammatory in dark conditions and their anti-inflammatory potentials significantly increased upon xenon light treatment. We are presenting novel photodynamic immunomodulatory agents that can be used to suppress excessive inflammation in disease conditions that have been associated with excessive inflammation.


Assuntos
Doenças Autoimunes , Cobre , Animais , Anti-Inflamatórios/farmacologia , Cobre/farmacologia , Inflamação , Macrófagos , Mamíferos , Água/farmacologia
2.
Heliyon ; 5(10): e02607, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31667420

RESUMO

A series of imidazolium bromide salts (NIM-Br 1a, 1b and 1c) bearing different lengths of alkyl chains were synthesized and theirin vitro antibacterial activities were determined by measuring the minimum inhibitory concentration (MIC) values for Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Enterococcus faecalis. In addition, these imidazolium derivatives were also evaluated against biofilm produced by these bacterial strains. All compounds were found to be effective against Gram-positive and Gram-negative bacteria, and also more effective on the S. aureus biofilm production than the others.

3.
Molecules ; 23(11)2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355983

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is a non-invasive and innovative cancer therapy based on the photodynamic effect. In this study, we sought to determine the singlet oxygen production, intracellular uptake, and in vitro photodynamic therapy potential of Cetixumab-targeted, zinc(II) 2,3,9,10,16,17,23,24-octa(tert-butylphenoxy))phthalocyaninato(2-)-N29,N30,N31,N32 (ZnPcOBP)-loaded mesoporous silica nanoparticles against pancreatic cancer cells. RESULTS: The quantum yield (ΦΔ) value of ZnPcOBP was found to be 0.60 in toluene. In vitro cellular studies were performed to determine the dark- and phototoxicity of samples with various concentrations of ZnPcOBP by using pancreatic cells (AsPC-1, PANC-1 and MIA PaCa-2) and 20, 30, and 40 J/cm² light fluences. No dark toxicity was observed for any sample in any cell line. ZnPcOBP alone showed a modest photodynamic activity. However, when incorporated in silica nanoparticles, it showed a relatively high phototoxic effect, which was further enhanced by Cetuximab, a monoclonal antibody that targets the Epidermal Growth Factor Receptor (EGFR). The cell-line dependent photokilling observed correlates well with EGFR expression levels in these cells. CONCLUSIONS: Imidazole-capped Cetuximab-targeted mesoporous silica nanoparticles are excellent vehicles for the selective delivery of ZnPcOBP to pancreatic cancer cells expressing the EGFR receptor. The novel nanosystem appears to be a suitable agent for photodynamic therapy of pancreatic tumors.


Assuntos
Cetuximab/farmacologia , Indóis/administração & dosagem , Nanopartículas , Compostos Organometálicos/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Dióxido de Silício , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cetuximab/química , Humanos , Indóis/química , Isoindóis , Luz , Nanopartículas/química , Compostos Organometálicos/química , Neoplasias Pancreáticas , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Porosidade , Dióxido de Silício/química , Oxigênio Singlete/química , Compostos de Zinco
4.
Chem Biol Drug Des ; 91(3): 789-796, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29136341

RESUMO

In recent years, phthalocyanines (Pcs) have been widely used as photosensitizer in photodynamic therapy applications. Because of their strong absorptions in the near-infrared region (640-700 nm). The integration of phthalocyanine derivatives to a nanoparticle is expected to be efficient way to improve the activity of the photosensitizer on the targeted tissue. It is known that the integrated molecules not only show better accumulation on tumor tissue but also reduce toxicity in healthy tissues. In this study, the ZnPc molecule was synthesized and integrated to the TiO2 nanoparticle, to investigate the potential of PDT and its cytotoxicity. Additionally, ZnPc and ZnPc-TiO2 molecules were labeled with 131 I and it was aimed to put forth the nuclear imaging/therapy potentials of 131 I labeled ZnPc/ZnPc-TiO2 by determining in vitro uptakes in mouse mammary carcinoma (EMT6), human cervical adenocarcinoma (HeLa). In result of our study, it was observed that the radiolabeling yields of the synthesized ZnPc and ZnPc-TiO2 with 131 I were quite high. In vitro uptake studies shown that 131 I-ZnPc-TiO2 could be a potential agent for nuclear imaging/treatment of breast and cervical cancers. According to PDT results, ZnPc-TiO2 might have as to be a potential PDT agent in the treatment of cervical tumor. ZnPc and ZnPc-TiO2 might be used as theranostic agents.


Assuntos
Indóis , Imageamento por Ressonância Magnética , Neoplasias Mamárias Animais , Nanopartículas , Fotoquimioterapia , Titânio , Neoplasias do Colo do Útero , Zinco , Animais , Feminino , Células HeLa , Humanos , Indóis/química , Indóis/farmacologia , Isoindóis , Neoplasias Mamárias Animais/diagnóstico por imagem , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/metabolismo , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Titânio/química , Titânio/farmacologia , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Zinco/química , Zinco/farmacologia
5.
Sci Rep ; 7(1): 11222, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894243

RESUMO

Multi-colored, water soluble fluorescent carbon nanodots (C-Dots) with quantum yield changing from 4.6 to 18.3% were synthesized in multi-gram using dated cola beverage through a simple thermal synthesis method and implemented as conductive and ion donating supercapacitor component. Various properties of C-Dots, including size, crystal structure, morphology and surface properties along with their Raman and electron paramagnetic resonance spectra were analyzed and compared by means of their fluorescence and electronic properties. α-Manganese Oxide-Polypyrrole (PPy) nanorods decorated with C-Dots were further conducted as anode materials in a supercapacitor. Reduced graphene oxide was used as cathode along with the dicationic bis-imidazolium based ionic liquid in order to enhance the charge transfer and wetting capacity of electrode surfaces. For this purpose, we used octyl-bis(3-methylimidazolium)diiodide (C8H16BImI) synthesized by N-alkylation reaction as liquid ionic membrane electrolyte. Paramagnetic resonance and impedance spectroscopy have been undertaken in order to understand the origin of the performance of hybrid capacitor in more depth. In particular, we obtained high capacitance value (C = 17.3 µF/cm2) which is exceptionally related not only the quality of synthesis but also the choice of electrode and electrolyte materials. Moreover, each component used in the construction of the hybrid supercapacitor is also played a key role to achieve high capacitance value.

6.
Int J Pharm ; 524(1-2): 467-474, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28365390

RESUMO

Phthalocyanines (Pcs) are commonly used as Photosensors (PSs) in Photodynamic Therapy (PDT) applications due to their intense absorption in the far red-near IR spectral region with a high extinction coefficient and high ability for generating singlet oxygen. Pcs targetspecifically tumors, and do not show any considerable toxic effects under the absence of light. In particular, their chemical versatility has allowed the introducion a number of substituent at the periferal or axial positions which provide modulating photophysical properties, increases the solubility of these compounds in organic solvents. Nanoparticles increase the bioavailability, stability, and transport of PSs to target tissue. TiO2 nanoparticles are prefered in these applications because of their non toxic, low cost and high chemical stability properties. In our study, a Zinc Phthalocyanine (ZnPc) was used as a photosensor. The design of ZnPc integrated TiO2 nanoparticles is intended to make PSs a more effective PDT agent. With the aim to examine the nuclear imaging/treatment potentials of ZnPc and ZnPc-TiO2 in hepatocellular carcinoma (HepG2), colorectal adenocarcinoma (HT29) tumor and human healthy lung (WI38) cell lines in vitro study ZnPc and TiO2-ZnPc were also labeled with 131I. It is determined that 131I-ZnPc-TiO2 nanoparticle show a potential as an agent for the imaging/treatment of hepatocellular cancer by in vitro. The toxicity studies revealed that TiO2 nanoparticle decreases the toxicity of ZnPc. In vitro PDT results show that TiO2-ZnPc has a potential as a PDT agent in colon tumor treatment. Consequently, synthesized ZnPc and ZnPc-TiO2 could be promising candidates as theranostic agents.


Assuntos
Indóis/química , Nanopartículas/química , Compostos Organometálicos/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Titânio/química , Linhagem Celular Tumoral , Células HT29 , Células Hep G2 , Humanos , Isoindóis , Compostos de Zinco
7.
Talanta ; 159: 222-230, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474302

RESUMO

In this study a new adsorbent, ionic liquid (1,8-naphthalene monoimide bearing imidazolium salt) coated carbon nanospheres, was synthesized for the first time and it was used for the solid phase extraction of copper and lead from various samples prior to determination by flame atomic absorption spectrometry. The ionic liquid, carbon nanospheres and ionic liquid coated carbon nanospheres were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, (1)H NMR and (13)C NMR, Brunauer, Emmett and Teller surface area and zeta potential measurements. Various parameters for method optimization such as pH, adsorption and elution contact times, eluent volume, type and concentration, centrifuge time, sample volume, adsorption capacity and possible interfering ion effects were tested. The optimum pH was 6. The preconcentration factor, detection limits, adsorption capacity and precision (as RSD%) of the method were found to be 300-fold, 0.30µgL(-1), 60mgg(-1) and 1.1% for copper and 300-fold, 1.76µgL(-1); 50.3mgg(-1) and 2.2%, for lead, respectively. The effect of contact time results showed that copper and lead were adsorbed and desorbed from the adsorbent without vortexing. The equilibrium between analyte and adsorbent is reached very quickly. The method was rather selective for matrix ions in high concentrations. The accuracy of the developed method was confirmed by analyzing certified reference materials (LGC6016 Estuarine Water, Reference Material 8704 Buffalo River Sediment, and BCR-482 Lichen) and by spiking sea water, wastewater, street dust and spice samples.

8.
Chem Biol Drug Des ; 87(2): 224-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26348246

RESUMO

Novel octylthio-containing asymmetrically substituted Zn(II) phthalocyanine (Zn(II)Pc1) and a symmetric derivative (Zn(II)Pc2) have been prepared to investigate the biological potential and ability to photosensitize singlet oxygen for photodynamic therapy applications. In this study, the singlet oxygen generation potential and in vitro photodynamic activities of these compounds have been tested. Both ZnPcs reveal to be very efficient singlet oxygen generators and promising PSs for PDT applications. In vitro PDT activities of the compounds were evaluated in EMT-6 murine mammary carcinoma and HeLa human cervix carcinoma cell lines. Moreover, Zn(II)Pc1 displayed the phototoxic effects in the mammary cancer cell line (6.25 µm concentration at 30 J/cm(2) light dose and 12.5 µm concentration at 20 J/cm(2) light dose), while Zn(II)Pc2 did not show any phototoxic effects both in two cell lines. Zn(II)Pcs were radiolabeled with (131) I in high yields. Biodistribution studies revealed that the radiolabeled Zn(II)Pc1 showed significant uptake in l. intestine, pancreas, brain, and ovary, while Zn(II)Pc2 has significant uptake in ovary and pancreas in normal rats. Hence, these Pcs derivatives could be promising candidate for tumor nuclear imaging.


Assuntos
Indóis/metabolismo , Compostos Organometálicos/metabolismo , Animais , Linhagem Celular Tumoral , Cromatografia em Camada Fina , Feminino , Células HeLa , Humanos , Indóis/química , Indóis/farmacologia , Radioisótopos do Iodo/química , Isoindóis , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Ratos , Ratos Wistar , Oxigênio Singlete/metabolismo , Temperatura , Distribuição Tecidual , Compostos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA