Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Geobiology ; 17(6): 660-675, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31328364

RESUMO

The extent of fractionation of sulfur isotopes by sulfate-reducing microbes is dictated by genomic and environmental factors. A greater understanding of species-specific fractionations may better inform interpretation of sulfur isotopes preserved in the rock record. To examine whether gene diversity influences net isotopic fractionation in situ, we assessed environmental chemistry, sulfate reduction rates, diversity of putative sulfur-metabolizing organisms by 16S rRNA and dissimilatory sulfite reductase (dsrB) gene amplicon sequencing, and net fractionation of sulfur isotopes along a sediment transect of a hypersaline Arctic spring. In situ sulfate reduction rates yielded minimum cell-specific sulfate reduction rates < 0.3 × 10-15 moles cell-1  day-1 . Neither 16S rRNA nor dsrB diversity indices correlated with relatively constant (38‰-45‰) net isotope fractionation (ε34 Ssulfide-sulfate ). Measured ε34 S values could be reproduced in a mechanistic fractionation model if 1%-2% of the microbial community (10%-60% of Deltaproteobacteria) were engaged in sulfate respiration, indicating heterogeneous respiratory activity within sulfate-reducing populations. This model indicated enzymatic kinetic diversity of Apr was more likely to correlate with sulfur fractionation than DsrB. We propose that, above a threshold Shannon diversity value of 0.8 for dsrB, the influence of the specific composition of the microbial community responsible for generating an isotope signal is overprinted by the control exerted by environmental variables on microbial physiology.


Assuntos
Bactérias/metabolismo , Lagoas/microbiologia , Sulfatos/metabolismo , Isótopos de Enxofre/metabolismo , Bactérias/classificação , México , Microbiota , Oxirredução
3.
Environ Microbiol Rep ; 8(2): 250-60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26743115

RESUMO

Viruses are ubiquitous drivers of microbial ecology and evolution and contribute to biogeochemical cycling. Attention to these attributes has been more substantial for marine viruses than viruses of other environments. Microscopy-based investigation of the viral communities from two cold, hypersaline Arctic springs was undertaken to explore the effects of these conditions on microbe-viral ecology. Sediments and water samples were collected along transects from each spring, from anoxic spring outlets through oxygenated downstream channels. Viral abundance, virus-microbe ratios and modelled virus-microbe contact rates were lower than comparable aqueous and sedimentary environments and most similar to deep subsurface sediments. No individual cell from either spring was visibly infected. Viruses in these springs appear to play a smaller role in controlling microbial populations through lytic activity than in marine water column or surface sedimentary environments. Relief from viral predation indicates the microbial communities are primarily controlled by nutrient limitation. The similarity of these springs to deep subsurface sediments suggests a biogeographic divide in viral replication strategy in marine sediments.


Assuntos
Biota , Temperatura Baixa , Sedimentos Geológicos/virologia , Replicação Viral/efeitos da radiação , Vírus/classificação , Vírus/efeitos da radiação , Regiões Árticas , Seleção Genética
4.
Front Microbiol ; 7: 2158, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28167930

RESUMO

Viruses are a primary influence on microbial mortality in the global ocean. The impacts of viruses on their microbial hosts in low-energy environments are poorly explored and are the focus of this study. To investigate the role of viruses in mediating mortality in low-energy environments where contacts between viruses and microbes are infrequent, we conducted a set of in situ time series incubations in the outlet and channel sediments of two cold, hypersaline springs of the Canadian High Arctic. We found microbial and viral populations in dynamic equilibrium, indicating approximately equal birth and death rates for each population. In situ rates of microbial growth were low (0.5-50 × 103 cells cm-3 h-1) as were rates of viral decay (0.09-170 × 104 virions cm-3 h-1). A large fraction of the springs' viral communities (49-100%) were refractory to decay over the timescales of our experiments. Microcosms amended with lactate or acetate exhibited increased microbial growth rates (up to three-fold) indicating organic carbon as one limiting resource for the microbial communities in these environments. A substantial fraction (15-71%) of the microbial populations contained inducible proviruses that were released- occasionally in multiple pulses- over the eight monitored days following chemical induction. Our findings indicate that viruses in low-energy systems maintain low rates of production and activity, have a small but notable impact on microbial mortality (8-29% attenuation of growth) and that successful viral replication may primarily proceed by non-lethal strategies. In cold, low biomass marine systems of similar character (e.g., subsurface sediments), viruses may be a relatively minor driver of community mortality compared to less energy-limited environments such as the marine water column or surface sediments.

5.
Extremophiles ; 17(1): 99-114, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23224375

RESUMO

The 104 kb genome of cold-active bacteriophage 9A, which replicates in the marine psychrophilic gamma-proteobacterium Colwellia psychrerythraea strain 34H (between -12 and 8 °C), was sequenced and analyzed to investigate elements of molecular adaptation to low temperature and phage-host interactions in the cold. Most characterized ORFs indicated closest similarity to gamma-proteobacteria and their phages, though no single module provided definitive phylogenetic grouping. A subset of primary structural features linked to psychrophily suggested that the majority of annotated phage proteins were not psychrophilic; those that were, primarily serve phage-specific functions and may also contribute to 9A's restricted temperature range for replication as compared to host. Comparative analyses suggest ribonucleotide reductase genes were acquired laterally from host. Neither restriction modification nor the CRISPR-Cas system appeared to be the predominant phage defense mechanism of Cp34H or other cold-adapted bacteria; we hypothesize that psychrophilic hosts rely more on the use of extracellular polymeric material to block cell surface receptors recognized by phages. The relative dearth of evidence for genome-specific defenses, genetic transfer events or auxiliary metabolic genes suggest that the 9A-Cp34H system may be less tightly coupled than are other genomically characterized marine phage-host systems, with possible implications for phage specificity under different environmental conditions.


Assuntos
Alteromonadaceae/virologia , Bacteriófagos/fisiologia , Genoma Viral/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Alteromonadaceae/genética , Organismos Aquáticos/virologia , Temperatura Baixa , Fases de Leitura Aberta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA