Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202401565, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864572

RESUMO

We present our findings on the on-surface synthesis of polyboroxine molecules derived from boroxine molecules precursors. This process is promoted by oxygen species present on the Au(111) surface: oxygen atoms facilitate the detachment of naphthalene units of trinaphthyl-boroxine molecules and bridge two unsaturated boroxine centers to form a boroxine-O-boroxine chemical motif. X-ray spectroscopic characterization shows that, as the synthesis process proceeds, it progressively tunes the electronic properties of the interface, thus providing a promising route to control the electron level alignment. .

2.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38864723

RESUMO

We report the development of a continuous-wave and pulsed X-band electron spin resonance (ESR) spectrometer for the study of spins on ordered surfaces down to cryogenic temperatures. The spectrometer operates in ultra-high vacuum and utilizes a half-wavelength microstrip line resonator realized using epitaxially grown copper films on single crystal Al2O3 substrates. The one-dimensional microstrip line resonator exhibits a quality factor of more than 200 at room temperature, close to the upper limit determined by radiation losses. The surface characterizations of the copper strip of the resonator by atomic force microscopy, low-energy electron diffraction, and scanning tunneling microscopy show that the surface is atomically clean, flat, and single crystalline. Measuring the ESR spectrum at 15 K from a few nm thick molecular film of YPc2, we find a continuous-wave ESR sensitivity of 2.6 × 1011 spins/G · Hz1/2, indicating that a signal-to-noise ratio of 3.9 G · Hz1/2 is expected from a monolayer of YPc2 molecules. Advanced pulsed ESR experimental capabilities, including dynamical decoupling and electron-nuclear double resonance, are demonstrated using free radicals diluted in a glassy matrix.

3.
Nanoscale Horiz ; 8(5): 624-631, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36752198

RESUMO

Molecular spins are emerging platforms for quantum information processing. By chemically tuning their molecular structure, it is possible to prepare a robust environment for electron spins and drive the assembly of a large number of qubits in atomically precise spin-architectures. The main challenges in the integration of molecular qubits into solid-state devices are (i) minimizing the interaction with the supporting substrate to suppress quantum decoherence and (ii) controlling the spatial distribution of the spins at the nanometer scale to tailor the coupling among qubits. Herein, we provide a nanofabrication method for the realization of a 2D patterned array of individually addressable Vanadyl Phthalocyanine (VOPc) spin qubits. The molecular nanoarchitecture is crafted on top of a diamagnetic monolayer of Titanyl Phthalocyanine (TiOPc) that electronically decouples the electronic spin of VOPc from the underlying Ag(100) substrate. The isostructural TiOPc interlayer also serves as a template to regulate the spacing between VOPc spin qubits on a scale of a few nanometers, as demonstrated using scanning tunneling microscopy, X-ray circular dichroism, and density functional theory. The long-range molecular ordering is due to a combination of charge transfer from the metallic substrate and strain in the TiOPc interlayer, which is attained without altering the pristine VOPc spin characteristics. Our results pave a viable route towards the future integration of molecular spin qubits into solid-state devices.

4.
J Phys Chem C Nanomater Interfaces ; 127(1): 393-402, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36660099

RESUMO

The growth of controlled 1D carbon-based nanostructures on metal surfaces is a multistep process whose path, activation energies, and intermediate metastable states strongly depend on the employed substrate. Whereas this process has been extensively studied on gold, less work has been dedicated to silver surfaces, which have a rather different catalytic activity. In this work, we present an experimental and theoretical investigation of the growth of poly-p-phenylene (PPP) chains and subsequent narrow graphene ribbons starting from 4,4″-dibromo-p-terphenyl molecular precursors deposited at the silver surface. By combing scanning tunneling microscopy (STM) imaging and density functional theory (DFT) simulations, we describe the molecular morphology and organization at different steps of the growth process and we discuss the stability and conversion of the encountered species on the basis of calculated thermodynamic quantities. Unlike the case of gold, at the debromination step we observe the appearance of organometallic molecules and chains, which can be explained by their negative formation energy in the presence of a silver adatom reservoir. At the dehydrogenation temperature, the persistence of intercalated Br atoms hinders the formation of well-structured graphene ribbons, which are instead observed on gold, leading only to a partial lateral coupling of the PPP chains. We numerically derive very different activation energies for Br desorption from the Ag and Au surfaces, thereby confirming the importance of this process in defining the kinetics of the formation of molecular chains and graphene ribbons on different metal surfaces.

5.
ACS Nano ; 15(10): 16162-16171, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34546038

RESUMO

Single lanthanide atoms and molecules are promising candidates for atomic data storage and quantum logic due to the long lifetime of their magnetic quantum states. Accessing and controlling these states through electrical transport requires precise knowledge of their electronic configuration at the level of individual atomic orbitals, especially of the outer shells involved in transport. However, no experimental techniques have so far shown the required sensitivity to probe single atoms with orbital selectivity. Here we resolve the magnetism of individual orbitals in Gd and Ho single atoms on MgO/Ag(100) by combining X-ray magnetic circular dichroism with multiplet calculations and density functional theory. In contrast to the usual assumption of bulk-like occupation of the different electronic shells, we establish a charge transfer mechanism leading to an unconventional singly ionized configuration. Our work identifies the role of the valence electrons in determining the quantum level structure and spin-dependent transport properties of lanthanide-based nanomagnets.

6.
Sci Rep ; 11(1): 16978, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417488

RESUMO

Understanding the excitonic processes at the interfaces of fluorescent π-conjugated molecules and metal electrodes is important for both fundamental studies and emerging applications. Adsorption configurations of molecules on metal surfaces significantly affect the physical characteristics of junctions as well as molecules. Here, the electronic structures and optical properties of molecular assemblies/Au interfaces were investigated using scanning probe and photoluminescence microscopy techniques. Scanning tunneling microscopy images and tunneling conductance spectra suggested that the self-assembled molecules were physisorbed on the Au surface. Visible-range photoluminescence studies showed that Au thin films modified the emission spectra and reduced the lifetime of excitons. Surface potential maps, obtained by Kelvin probe force microscopy, could visualize electron transfer from the molecules to Au under illumination, which could explain the decreased lifetime of excitons at the molecule/Au interface.

7.
ACS Nano ; 15(3): 5610-5617, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33656868

RESUMO

Nanostructured graphene has been widely studied in recent years due to the tunability of its electronic properties and its associated interest for a variety of fields, such as nanoelectronics and spintronics. However, many of the graphene nanostructures of technological interest are synthesized under ultrahigh vacuum, and their limited stability as they are brought out of such an inert environment may compromise their applicability. In this study, a combination of bond-resolving scanning probe microscopy (BR-SPM), along with theoretical calculations, has been employed to study (3,1)-chiral graphene nanoribbons [(3,1)-chGNRs] that were synthesized on a Au(111) surface and then exposed to oxidizing environments. Exposure to the ambient atmosphere, along with the required annealing treatment to desorb a sufficiently large fraction of contaminants to allow for its postexposure analysis by BR-SPM, revealed a significant oxidation of the ribbons, with a dramatically disruptive effect on their electronic properties. More controlled experiments avoiding high temperatures and exposing the ribbons only to low pressures of pure oxygen show that also under these more gentle conditions the ribbons are oxidized. From these results, we obtain additional insights into the preferential reaction sites and the nature of the main defects that are caused by oxygen. We conclude that graphene nanoribbons with zigzag edge segments require forms of protection before they can be used in or transferred through ambient conditions.

8.
Chem Commun (Camb) ; 56(61): 8659-8662, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32602478

RESUMO

We report a multi-step on-surface synthesis strategy. The first step consists in the surface-supported synthesis of metal-organic complexes, which are subsequently used to steer on-surface alkyne coupling reactions. In addition, we analyze and compare the electronic properties of the different coupling motifs obtained.

9.
Chem Commun (Camb) ; 56(19): 2833-2836, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32065182

RESUMO

The self-assembly of leucoquinizarin molecules on Au(111) surfaces is shown to be characterized by the molecules mostly being in their keto-enolic tautomeric form, with evidence of their temporary switching to other tautomeric forms. This reveals a metastable chemistry of the assembled molecules, to be considered for their possible employment in the formation of more complex hetero-organic interfaces.

10.
Chem Sci ; 11(21): 5441-5446, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-34094071

RESUMO

Fine management of chiral processes on solid surfaces has progressed over the years, yet still faces the need for the controlled and selective production of advanced chiral materials. Here, we report on the use of enantiomerically enriched molecular building blocks to demonstrate the transmission of their intrinsic chirality along a sequence of on-surface reactions. Triggered by thermal annealing, the on-surface reactions induced in this experiment involve firstly the coupling of the chiral reactants into chiral polymers and subsequently their transformation into planar prochiral graphene nanoribbons. Our study reveals that the axial chirality of the reactant is not only transferred to the polymers, but also to the planar chirality of the graphene nanoribbon end products. Such chirality transfer consequently allows, starting from adequate enantioenriched reactants, for the controlled production of chiral and prochiral organic nanoarchitectures with pre-defined handedness.

11.
Nanoscale ; 11(33): 15567-15575, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31402370

RESUMO

Over the last decades, organosulfur compounds at the interface of noble metals have proved to be extremely versatile systems for both fundamental and applied research. However, the anchoring of thiols to gold remained an object of controversy for a long time. The RS-Au-SR linkage, in particular, is a robust bonding configuration that displays interesting properties. It is generated spontaneously at room temperature and can be used for the production of extended molecular nanostructures. In this work we explore the behavior of 1,4-bis(4-mercaptophenyl)benzene (BMB) on the Au(111) surface, which results in the formation of 2D crystalline metal-organic assemblies stabilized by this type of Au-thiolate bonds. We show how to control the thiolate's stereospecific bonding motif and thereby choose whether to form ordered arrays of Au3BMB3 units with embedded triangular nanopores or linearly stacked metal-organic chains. The former turn out to be thermodynamically favored structures and display confinement of the underneath Au(111) surface state. The electronic properties of single molecules as well as of the 2D crystalline self-assemblies have been characterized both on the metal-organic backbone and inside the associated pores.

12.
Chemphyschem ; 20(18): 2317-2321, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31245897

RESUMO

In this contribution we report on light-induced metal-free coupling of propynylbenzene molecular units on highly oriented pyrolytic graphite. The reaction occurs within the self-assembled monolayer and leads to the generation of covalently coupled 1,5-hexadiyne and para-terphenyl derivatives under topological control. Such photochemical uncatalysed pathway represents an original approach in the field of topological C-C coupling at the solid/liquid interface and provides new insight into the low temperature formation of aromatic compounds at the surface of carbonaceous supports.

13.
ACS Nano ; 12(10): 10537-10544, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30295463

RESUMO

Designing molecular organic semiconductors with distinct frontier orbitals is key for the development of devices with desirable properties. Generating defined organic nanostructures with atomic precision can be accomplished by on-surface synthesis. We use this "dry" chemistry to introduce topological variations in a conjugated poly( para-phenylene) chain in the form of meta-junctions. As evidenced by STM and LEED, we produce a macroscopically ordered, monolayer thin zigzag chain film on a vicinal silver crystal. These cross-conjugated nanostructures are expected to display altered electronic properties, which are now unraveled by highly complementary experimental techniques (ARPES and STS) and theoretical calculations (DFT and EPWE). We find that meta-junctions dominate the weakly dispersive band structure, while the band gap is tunable by altering the linear segment's length. These periodic topology effects induce significant loss of the electronic coupling between neighboring linear segments leading to partial electron confinement in the form of weakly coupled quantum dots. Such periodic quantum interference effects determine the overall semiconducting character and functionality of the chains.

14.
Chem Commun (Camb) ; 54(73): 10260-10263, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30152499

RESUMO

Achieving the Ag(001)-supported synthesis of heptacene from two related reactants reveals the effect of the presence of Br atoms on the reaction process. The properties of reactants, intermediates and end-products are further characterized by scanning tunneling microscopy and spectroscopy.

15.
J Chem Phys ; 147(21): 214706, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29221400

RESUMO

We report on the assembly of a highly ordered array of copper tetrameric clusters, coordinated into a metal-organic network. The ordered cluster array has been achieved by the deposition of tetrahydroxyquinone molecules on the Cu(111) surface at room temperature, and subsequent thermally activated dehydrogenation with the formation of tetraoxyquinone tetra-anions with a 4 × 4 periodicity. The supramolecular organic network acts as a spacer for the highly ordered two-dimensional network of copper tetramers at the very surface.

16.
ACS Nano ; 11(11): 11661-11668, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29049879

RESUMO

We report the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4″-dibromo-para-terphenyl as the molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can subsequently be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbon's band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in GNR-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbate's band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate.

17.
J Am Chem Soc ; 138(32): 10151-6, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27437555

RESUMO

On-surface synthesis involving the homocoupling of aryl-alkynes affords the buildup of bisacetylene derivatives directly at surfaces, which in turn may be further used as ingredients for the production of novel functional materials. Generally, homocoupling of terminal alkynes takes place by thermal activation of molecular precursors on metal surfaces. However, the interaction of alkynes with surface metal atoms often induces unwanted reaction pathways when thermal energy is provided to the system. In this contribution we report about light-induced metal-free homocoupling of terminal alkynes on highly oriented pyrolitic graphite (HOPG). The reaction occurred with high efficiency and selectivity within a self-assembled monolayer (SAM) of aryl-alkynes and led to the generation of large domains of ordered butadiynyl derivatives. Such a photochemical uncatalyzed pathway represents an original approach in the field of topological C-C coupling at the solid/liquid interface.

18.
Chemistry ; 20(44): 14296-304, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25200655

RESUMO

We explore a photochemical approach to achieve an ordered polymeric structure at the sub-monolayer level on a metal substrate. In particular, a tetraphenylporphyrin derivative carrying para-amino-phenyl functional groups is used to obtain extended and highly ordered molecular wires on Ag(110). Scanning tunneling microscopy and density functional theory calculations reveal that porphyrin building blocks are joined through azo bridges, mainly as cis isomers. The observed highly stereoselective growth is the result of adsorbate/surface interactions, as indicated by X-ray photoelectron spectroscopy. At variance with previous studies, we tailor the formation of long-range ordered structures by the separate control of the surface molecular diffusion through sample heating, and of the reaction initiation through light absorption. This previously unreported approach shows that the photo-induced covalent stabilization of self-assembled molecular monolayers to obtain highly ordered surface covalent organic frameworks is viable by a careful choice of the precursors and reaction conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA