Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nat Plants ; 10(4): 673-688, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38589485

RESUMO

The symbiotic interaction of plants with arbuscular mycorrhizal (AM) fungi is ancient and widespread. Plants provide AM fungi with carbon in exchange for nutrients and water, making this interaction a prime target for crop improvement. However, plant-fungal interactions are restricted to a small subset of root cells, precluding the application of most conventional functional genomic techniques to study the molecular bases of these interactions. Here we used single-nucleus and spatial RNA sequencing to explore both Medicago truncatula and Rhizophagus irregularis transcriptomes in AM symbiosis at cellular and spatial resolution. Integrated, spatially registered single-cell maps revealed infected and uninfected plant root cell types. We observed that cortex cells exhibit distinct transcriptome profiles during different stages of colonization by AM fungi, indicating dynamic interplay between both organisms during establishment of the cellular interface enabling successful symbiosis. Our study provides insight into a symbiotic relationship of major agricultural and environmental importance and demonstrates a paradigm combining single-cell and spatial transcriptomics for the analysis of complex organismal interactions.

2.
Plant Cell ; 36(4): 812-828, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38231860

RESUMO

Single-cell and single-nucleus RNA-sequencing technologies capture the expression of plant genes at an unprecedented resolution. Therefore, these technologies are gaining traction in plant molecular and developmental biology for elucidating the transcriptional changes across cell types in a specific tissue or organ, upon treatments, in response to biotic and abiotic stresses, or between genotypes. Despite the rapidly accelerating use of these technologies, collective and standardized experimental and analytical procedures to support the acquisition of high-quality data sets are still missing. In this commentary, we discuss common challenges associated with the use of single-cell transcriptomics in plants and propose general guidelines to improve reproducibility, quality, comparability, and interpretation and to make the data readily available to the community in this fast-developing field of research.


Assuntos
Perfilação da Expressão Gênica , Plantas , Reprodutibilidade dos Testes , Plantas/genética , Estresse Fisiológico/genética , Armazenamento e Recuperação da Informação
3.
Neurol Genet ; 10(1): e200110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38130828

RESUMO

Background and Objectives: Nearly all genetic analyses of Parkinson disease (PD) have been in populations of European ancestry. We sought to test the ability of a machine learning method to extract accurate PD diagnoses from an electronic medical record (EMR) system, to see whether genetic variants identified in European populations generalize to individuals of African and Hispanic ancestries, and to compare the rates of PD across ancestries. Methods: A machine learning method using natural language processing was applied to EMRs of US veterans participating in the VA Million Veteran Program (MVP) to identify individuals with PD. These putative cases were vetted via blind chart review by a movement disorder specialist. A polygenic risk score (PRS) of 90 established genetic variants whose genotypes were imputed from a customized Axiom Biobank Array was evaluated in different case groups. Results: The EMR prediction scores had a distinct trimodal distribution, with 97% of the high group and only 30% of the middle group having a credible diagnosis of PD. Using the 3,542 cases from the high group matched 4:1 to controls, the PRS was highly predictive in individuals of European ancestry (n = 3,137 cases; OR = 1.82; p = 8.01E-48), and nearly identical effect sizes were seen in individuals of African (n = 184; OR = 2.07; p = 3.4E-4) and Hispanic ancestries (n = 221; OR = 2.13; p = 3.9E-6). The PRS was much less predictive for the 2,757 European ancestry cases who had an ICD code for PD but for whom the machine learning method had a lower confidence in their diagnosis. No novel ancestry-specific genetic variants were identified. Individuals with African ancestry had one-quarter the rate of PD compared with European or Hispanic ancestries aged 60-70 years and one half the rate in the 70-80 years age range. African American cases had a higher proportion of their DNA originating in Europe compared with African American controls. Discussion: Machine learning can reliably classify PD using data from a large EMR. Larger studies of non-European populations are required to confirm the generalizability of PD risk variants identified in populations of European ancestry and the increased risk coming from a higher proportion of European DNA in African Americans.

4.
Plant Direct ; 7(11): e545, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37965197

RESUMO

Climate change is globally affecting rainfall patterns, necessitating the improvement of drought tolerance in crops. Sorghum bicolor is a relatively drought-tolerant cereal. Functional stay-green sorghum genotypes can maintain green leaf area and efficient grain filling during terminal post-flowering water deprivation, a period of ~10 weeks. To obtain molecular insights into these characteristics, two drought-tolerant genotypes, BTx642 and RTx430, were grown in replicated control and terminal post-flowering drought field plots in California's Central Valley. Photosynthetic, photoprotective, and water dynamics traits were quantified and correlated with metabolomic data collected from leaves, stems, and roots at multiple timepoints during control and drought conditions. Physiological and metabolomic data were then compared to longitudinal RNA sequencing data collected from these two genotypes. The unique metabolic and transcriptomic response to post-flowering drought in sorghum supports a role for the metabolite galactinol in controlling photosynthetic activity through regulating stomatal closure in post-flowering drought. Additionally, in the functional stay-green genotype BTx642, photoprotective responses were specifically induced in post-flowering drought, supporting a role for photoprotection in the molecular response associated with the functional stay-green trait. From these insights, new pathways are identified that can be targeted to maximize yields under growth conditions with limited water.

5.
Cell Rep ; 42(7): 112676, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37342910

RESUMO

Plant response to pathogen infection varies within a leaf, yet this heterogeneity is not well resolved. We expose Arabidopsis to Pseudomonas syringae or mock treatment and profile >11,000 individual cells using single-cell RNA sequencing. Integrative analysis of cell populations from both treatments identifies distinct pathogen-responsive cell clusters exhibiting transcriptional responses ranging from immunity to susceptibility. Pseudotime analyses through pathogen infection reveals a continuum of disease progression from an immune to a susceptible state. Confocal imaging of promoter-reporter lines for transcripts enriched in immune cell clusters shows expression surrounding substomatal cavities colonized or in close proximity to bacterial colonies, suggesting that cells within immune clusters represent sites of early pathogen invasion. Susceptibility clusters exhibit more general localization and are highly induced at later stages of infection. Overall, our work shows cellular heterogeneity within an infected leaf and provides insight into plant differential response to infection at a single-cell level.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Pseudomonas syringae/metabolismo , Proteínas de Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
6.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993677

RESUMO

For plants adapted to bright light, a decrease in the amount of light received can be detrimental to their growth and survival. Consequently, in response to shade from surrounding vegetation, they initiate a suite of molecular and morphological changes known as the shade avoidance response (SAR) through which stems and petioles elongate in search for light. Under sunlight-night cycles, the plant's responsiveness to shade varies across the day, being maximal at dusk time. While a role for the circadian clock in this regulation has long been proposed, mechanistic understanding of how it is achieved is incomplete. Here we show that the clock component GIGANTEA (GI) directly interacts with the transcriptional regulator PHYTOCHROME INTERACTING FACTOR 7 (PIF7), a key player in the response to shade. GI represses PIF7 transcriptional activity and the expression of its target genes in response to shade, thereby fine-tuning the magnitude of the response to limiting light conditions. We find that, under light/dark cycles, this function of GI is required to adequately modulate the gating of the response to shade at dusk. Importantly, we also show that GI expression in epidermal cells is sufficient for proper SAR regulation.

7.
BMJ Open ; 13(2): e071261, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36806073

RESUMO

INTRODUCTION: The impact of long COVID on health-related quality of-life (HRQoL) and productivity is not currently known. It is important to understand who is worst affected by long COVID and the cost to the National Health Service (NHS) and society, so that strategies like booster vaccines can be prioritised to the right people. OpenPROMPT aims to understand the impact of long COVID on HRQoL in adults attending English primary care. METHODS AND ANALYSIS: We will ask people to participate in this cohort study through a smartphone app (Airmid), and completing a series of questionnaires held within the app. Questionnaires will ask about HRQoL, productivity and symptoms of long COVID. Participants will be asked to fill in the questionnaires once a month, for 90 days. Questionnaire responses will be linked, where possible, to participants' existing health records from primary care, secondary care, and COVID testing and vaccination data. Analysis will take place using the OpenSAFELY data platform and will estimate the impact of long COVID on HRQoL, productivity and cost to the NHS. ETHICS AND DISSEMINATION: The Proportionate Review Sub-Committee of the South Central-Berkshire B Research Ethics Committee has reviewed and approved the study and have agreed that we can ask people to take part (22/SC/0198). Our results will provide information to support long-term care, and make recommendations for prevention of long COVID in the future. TRIAL REGISTRATION NUMBER: NCT05552612.


Assuntos
COVID-19 , Aplicativos Móveis , Adulto , Humanos , Big Data , Estudos de Coortes , COVID-19/prevenção & controle , Teste para COVID-19 , Medidas de Resultados Relatados pelo Paciente , Síndrome de COVID-19 Pós-Aguda , Smartphone , Medicina Estatal
8.
Mol Ecol ; 32(10): 2674-2687, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35000239

RESUMO

The shifts in adaptive strategies revealed by ecological succession and the mechanisms that facilitate these shifts are fundamental to ecology. These adaptive strategies could be particularly important in communities of arbuscular mycorrhizal fungi (AMF) mutualistic with sorghum, where strong AMF succession replaces initially ruderal species with competitive ones and where the strongest plant response to drought is to manage these AMF. Although most studies of agriculturally important fungi focus on parasites, the mutualistic symbionts, AMF, constitute a research system of human-associated fungi whose relative simplicity and synchrony are conducive to experimental ecology. First, we hypothesize that, when irrigation is stopped to mimic drought, competitive AMF species should be replaced by AMF species tolerant to drought stress. We then, for the first time, correlate AMF abundance and host plant transcription to test two novel hypotheses about the mechanisms behind the shift from ruderal to competitive AMF. Surprisingly, despite imposing drought stress, we found no stress-tolerant AMF, probably due to our agricultural system having been irrigated for nearly six decades. Remarkably, we found strong and differential correlation between the successional shift from ruderal to competitive AMF and sorghum genes whose products (i) produce and release strigolactone signals, (ii) perceive mycorrhizal-lipochitinoligosaccharide (Myc-LCO) signals, (iii) provide plant lipid and sugar to AMF, and (iv) import minerals and water provided by AMF. These novel insights frame new hypotheses about AMF adaptive evolution and suggest a rationale for selecting AMF to reduce inputs and maximize yields in commercial agriculture.


Assuntos
Micorrizas , Humanos , Micorrizas/genética , Simbiose/genética , Plantas/genética , Plantas/microbiologia , Agricultura , Expressão Gênica , Raízes de Plantas/microbiologia , Microbiologia do Solo , Solo
9.
Plant Physiol ; 191(1): 35-46, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36200899

RESUMO

We review how a data infrastructure for the Plant Cell Atlas might be built using existing infrastructure and platforms. The Human Cell Atlas has developed an extensive infrastructure for human and mouse single cell data, while the European Bioinformatics Institute has developed a Single Cell Expression Atlas, that currently houses several plant data sets. We discuss issues related to appropriate ontologies for describing a plant single cell experiment. We imagine how such an infrastructure will enable biologists and data scientists to glean new insights into plant biology in the coming decades, as long as such data are made accessible to the community in an open manner.


Assuntos
Biologia Computacional , Células Vegetais , Animais , Humanos , Camundongos , Plantas/genética
10.
Plant Direct ; 6(6): e406, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35774620

RESUMO

The Plant Cell Atlas (PCA) community hosted a virtual symposium on December 9 and 10, 2021 on single cell and spatial omics technologies. The conference gathered almost 500 academic, industry, and government leaders to identify the needs and directions of the PCA community and to explore how establishing a data synthesis center would address these needs and accelerate progress. This report details the presentations and discussions focused on the possibility of a data synthesis center for a PCA and the expected impacts of such a center on advancing science and technology globally. Community discussions focused on topics such as data analysis tools and annotation standards; computational expertise and cyber-infrastructure; modes of community organization and engagement; methods for ensuring a broad reach in the PCA community; recruitment, training, and nurturing of new talent; and the overall impact of the PCA initiative. These targeted discussions facilitated dialogue among the participants to gauge whether PCA might be a vehicle for formulating a data synthesis center. The conversations also explored how online tools can be leveraged to help broaden the reach of the PCA (i.e., online contests, virtual networking, and social media stakeholder engagement) and decrease costs of conducting research (e.g., virtual REU opportunities). Major recommendations for the future of the PCA included establishing standards, creating dashboards for easy and intuitive access to data, and engaging with a broad community of stakeholders. The discussions also identified the following as being essential to the PCA's success: identifying homologous cell-type markers and their biocuration, publishing datasets and computational pipelines, utilizing online tools for communication (such as Slack), and user-friendly data visualization and data sharing. In conclusion, the development of a data synthesis center will help the PCA community achieve these goals by providing a centralized repository for existing and new data, a platform for sharing tools, and new analytical approaches through collaborative, multidisciplinary efforts. A data synthesis center will help the PCA reach milestones, such as community-supported data evaluation metrics, accelerating plant research necessary for human and environmental health.

11.
Br J Cancer ; 127(2): 301-312, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35368045

RESUMO

BACKGROUND: Genetically predicted leukocyte telomere length (LTL) has been evaluated in several studies of childhood and adult cancer. We test whether genetically predicted longer LTL is associated with germ cell tumours (GCT) in children and adults. METHODS: Paediatric GCT samples were obtained from a Children's Oncology Group study and state biobank programs in California and Michigan (N = 1413 cases, 1220 biological parents and 1022 unrelated controls). Replication analysis included 396 adult testicular GCTs (TGCT) and 1589 matched controls from the UK Biobank. Mendelian randomisation was used to look at the association between genetically predicted LTL and GCTs and TERT variants were evaluated within GCT subgroups. RESULTS: We identified significant associations between TERT variants reported in previous adult TGCT GWAS in paediatric GCT: TERT/rs2736100-C (OR = 0.82; P = 0.0003), TERT/rs2853677-G (OR = 0.80; P = 0.001), and TERT/rs7705526-A (OR = 0.81; P = 0.003). We also extended these findings to females and tumours outside the testes. In contrast, we did not observe strong evidence for an association between genetically predicted LTL by other variants and GCT risk in children or adults. CONCLUSION: While TERT is a known susceptibility locus for GCT, our results suggest that LTL predicted by other variants is not strongly associated with risk in either children or adults.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Telômero , Adulto , Criança , Feminino , Humanos , Leucócitos , Neoplasias Embrionárias de Células Germinativas/genética , Telômero/genética , Homeostase do Telômero/genética
12.
Dev Cell ; 57(4): 543-560.e9, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35134336

RESUMO

In all multicellular organisms, transcriptional networks orchestrate organ development. The Arabidopsis root, with its simple structure and indeterminate growth, is an ideal model for investigating the spatiotemporal transcriptional signatures underlying developmental trajectories. To map gene expression dynamics across root cell types and developmental time, we built a comprehensive, organ-scale atlas at single-cell resolution. In addition to estimating developmental progressions in pseudotime, we employed the mathematical concept of optimal transport to infer developmental trajectories and identify their underlying regulators. To demonstrate the utility of the atlas to interpret new datasets, we profiled mutants for two key transcriptional regulators at single-cell resolution, shortroot and scarecrow. We report transcriptomic and in vivo evidence for tissue trans-differentiation underlying a mixed cell identity phenotype in scarecrow. Our results support the atlas as a rich community resource for unraveling the transcriptional programs that specify and maintain cell identity to regulate spatiotemporal organ development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , Raízes de Plantas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Redes Reguladoras de Genes/fisiologia , Mutação/genética , Raízes de Plantas/metabolismo , Análise de Célula Única/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/fisiologia
13.
Elife ; 102021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34491200

RESUMO

With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.


Assuntos
Células Vegetais , Agricultura , Chlamydomonas reinhardtii , Cloroplastos , Biologia Computacional , Processamento de Imagem Assistida por Computador , Células Vegetais/fisiologia , Desenvolvimento Vegetal , Plantas/classificação , Plantas/genética , Zea mays
14.
Commun Biol ; 4(1): 962, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385583

RESUMO

Progress in sequencing, microfluidics, and analysis strategies has revolutionized the granularity at which multicellular organisms can be studied. In particular, single-cell transcriptomics has led to fundamental new insights into animal biology, such as the discovery of new cell types and cell type-specific disease processes. However, the application of single-cell approaches to plants, fungi, algae, or bacteria (environmental organisms) has been far more limited, largely due to the challenges posed by polysaccharide walls surrounding these species' cells. In this perspective, we discuss opportunities afforded by single-cell technologies for energy and environmental science and grand challenges that must be tackled to apply these approaches to plants, fungi and algae. We highlight the need to develop better and more comprehensive single-cell technologies, analysis and visualization tools, and tissue preparation methods. We advocate for the creation of a centralized, open-access database to house plant single-cell data. Finally, we consider how such efforts should balance the need for deep characterization of select model species while still capturing the diversity in the plant kingdom. Investments into the development of methods, their application to relevant species, and the creation of resources to support data dissemination will enable groundbreaking insights to propel energy and environmental science forward.


Assuntos
Conservação de Recursos Energéticos/métodos , Bases de Dados como Assunto , Ciência Ambiental/métodos , Plantas , Análise de Célula Única/métodos , Tecnologia/instrumentação
15.
J Integr Plant Biol ; 63(11): 1888-1905, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34403192

RESUMO

To understand and engineer plant metabolism, we need a comprehensive and accurate annotation of all metabolic information across plant species. As a step towards this goal, we generated genome-scale metabolic pathway databases of 126 algal and plant genomes, ranging from model organisms to crops to medicinal plants (https://plantcyc.org). Of these, 104 have not been reported before. We systematically evaluated the quality of the databases, which revealed that our semi-automated validation pipeline dramatically improves the quality. We then compared the metabolic content across the 126 organisms using multiple correspondence analysis and found that Brassicaceae, Poaceae, and Chlorophyta appeared as metabolically distinct groups. To demonstrate the utility of this resource, we used recently published sorghum transcriptomics data to discover previously unreported trends of metabolism underlying drought tolerance. We also used single-cell transcriptomics data from the Arabidopsis root to infer cell type-specific metabolic pathways. This work shows the quality and quantity of our resource and demonstrates its wide-ranging utility in integrating metabolism with other areas of plant biology.


Assuntos
Bases de Dados Factuais , Redes e Vias Metabólicas , Plantas/metabolismo , Viridiplantae/metabolismo , Genoma de Planta , Plantas/genética
16.
Nat Plants ; 7(5): 544-545, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34007034
17.
J Vis Exp ; (169)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749685

RESUMO

Histones belong to a family of highly conserved proteins in eukaryotes. They pack DNA into nucleosomes as functional units of chromatin. Post-translational modifications (PTMs) of histones, which are highly dynamic and can be added or removed by enzymes, play critical roles in regulating gene expression. In plants, epigenetic factors, including histone PTMs, are related to their adaptive responses to the environment. Understanding the molecular mechanisms of epigenetic control can bring unprecedented opportunities for innovative bioengineering solutions. Herein, we describe a protocol to isolate the nuclei and purify histones from sorghum leaf tissue. The extracted histones can be analyzed in their intact forms by top-down mass spectrometry (MS) coupled with online reversed-phase (RP) liquid chromatography (LC). Combinations and stoichiometry of multiple PTMs on the same histone proteoform can be readily identified. In addition, histone tail clipping can be detected using the top-down LC-MS workflow, thus, yielding the global PTM profile of core histones (H4, H2A, H2B, H3). We have applied this protocol previously to profile histone PTMs from sorghum leaf tissue collected from a large-scale field study, aimed at identifying epigenetic markers of drought resistance. The protocol could potentially be adapted and optimized for chromatin immunoprecipitation-sequencing (ChIP-seq), or for studying histone PTMs in similar plants.


Assuntos
Biomarcadores/metabolismo , Epigênese Genética , Histonas/isolamento & purificação , Espectrometria de Massas , Folhas de Planta/metabolismo , Proteínas de Plantas/isolamento & purificação , Sorghum/genética , Sorghum/metabolismo , Sequência de Aminoácidos , Soluções Tampão , Núcleo Celular/metabolismo , Cromatografia Líquida , Histonas/química , Histonas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional
18.
Sci Rep ; 10(1): 8759, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472068

RESUMO

Traditional manual gating strategies are often time-intensive, place a high burden on the analyzer, and are susceptible to bias between analyzers. Several automated gating methods have shown to exceed performance of manual gating for a limited number of cell subsets. However, many of the automated algorithms still require significant manual interventions or have yet to demonstrate their utility in large datasets. Therefore, we developed an approach that utilizes a previously published automated algorithm (OpenCyto framework) with a manually created hierarchically cell gating template implemented, along with a custom developed visualization software (FlowAnnotator) to rapidly and efficiently analyze immunophenotyping data in large population studies. This approach allows pre-defining populations that can be analyzed solely by automated analysis and incorporating manual refinement for smaller downstream populations. We validated this method with traditional manual gating strategies for 24 subsets of T cells, B cells, NK cells, monocytes and dendritic cells in 931 participants from the Health and Retirement Study (HRS). Our results show a high degree of correlation (r ≥ 0.80) for 18 (78%) of the 24 cell subsets. For the remaining subsets, the correlation was low (<0.80) primarily because of the low numbers of events recorded in these subsets. The mean difference in the absolute counts between the hybrid method and manual gating strategy of these cell subsets showed results that were very similar to the traditional manual gating method. We describe a practical method for standardization of immunophenotyping methods in large scale population studies that provides a rapid, accurate and reproducible alternative to labor intensive manual gating strategies.


Assuntos
Citometria de Fluxo/métodos , Imunofenotipagem/normas , Software , Algoritmos , Biologia Computacional , Conjuntos de Dados como Assunto , Células Dendríticas , Estudos de Viabilidade , Inquéritos Epidemiológicos , Ensaios de Triagem em Larga Escala , Humanos , Imunofenotipagem/métodos , Estudos Longitudinais , Subpopulações de Linfócitos/classificação , Reprodutibilidade dos Testes
20.
PLoS One ; 15(3): e0229124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32203528

RESUMO

Extant research suggests that individuals employ traditional moral heuristics to support their observed altruistic behavior; yet findings have largely been limited to inductive extrapolation and rely on relatively few traditional frames in so doing, namely, deontology in organizational behavior and virtue theory in law and economics. Given that these and competing moral frames such as utilitarianism can manifest as identical behavior, we develop a moral framing instrument-the Philosophical Moral-Framing Measure (PMFM)-to expand and distinguish traditional frames associated and disassociated with observed altruistic behavior. The validation of our instrument based on 1015 subjects in 3 separate real stakes scenarios indicates that heuristic forms of deontology, virtue-theory, and utilitarianism are strongly related to such behavior, and that egoism is an inhibitor. It also suggests that deontic and virtue-theoretical frames may be commonly perceived as intertwined and opens the door for new research on self-abnegation, namely, a perceived moral obligation toward suffering and self-denial. These findings hold the potential to inform ongoing conversations regarding organizational citizenship and moral crowding out, namely, how financial incentives can undermine altruistic behavior.


Assuntos
Altruísmo , Heurística/fisiologia , Princípios Morais , Comportamento Social , Adolescente , Adulto , Teoria Ética , Ética , Feminino , Humanos , Masculino , Obrigações Morais , Filosofia , Reprodutibilidade dos Testes , Inquéritos e Questionários , Virtudes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA