Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Front Comput Neurosci ; 18: 1392655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841426

RESUMO

Introduction: Cross frequency coupling (CFC) between electrophysiological signals in the brain is a long-studied phenomenon and its abnormalities have been observed in conditions such as Parkinson's disease and epilepsy. More recently, CFC has been observed in stomach-brain electrophysiologic studies and thus becomes an enticing possible target for diseases involving aberrations of the gut-brain axis. However, current methods of detecting coupling, specifically phase-amplitude coupling (PAC), do not attempt to capture the phase and amplitude statistical relationships. Methods: In this paper, we first demonstrate a method of modeling these joint statistics with a flexible parametric approach, where we model the conditional distribution of amplitude given phase using a gamma distributed generalized linear model (GLM) with a Fourier basis of regressors. We perform model selection with minimum description length (MDL) principle, demonstrate a method for assessing goodness-of-fit (GOF), and showcase the efficacy of this approach in multiple electroencephalography (EEG) datasets. Secondly, we showcase how we can utilize the mutual information, which operates on the joint distribution, as a canonical measure of coupling, as it is non-zero and non-negative if and only if the phase and amplitude are not statistically independent. In addition, we build off of previous work by Martinez-Cancino et al., and Voytek et al., and show that the information density, evaluated using our method along the given sample path, is a promising measure of time-resolved PAC. Results: Using synthetically generated gut-brain coupled signals, we demonstrate that our method outperforms the existing gold-standard methods for detectable low-levels of phase-amplitude coupling through receiver operating characteristic (ROC) curve analysis. To validate our method, we test on invasive EEG recordings by generating comodulograms, and compare our method to the gold standard PAC measure, Modulation Index, demonstrating comparable performance in exploratory analysis. Furthermore, to showcase its use in joint gut-brain electrophysiology data, we generate topoplots of simultaneous high-density EEG and electrgastrography recordings and reproduce seminal work by Richter et al. that demonstrated the existence of gut-brain PAC. Using simulated data, we validate our method for different types of time-varying coupling and then demonstrate its performance to track time-varying PAC in sleep spindle EEG and mismatch negativity (MMN) datasets. Conclusions: Our new measure of PAC using Gamma GLMs and mutual information demonstrates a promising new way to compute PAC values using the full joint distribution on amplitude and phase. Our measure outperforms the most common existing measures of PAC, and show promising results in identifying time varying PAC in electrophysiological datasets. In addition, we provide for using our method with multiple comparisons and show that our measure potentially has more statistical power in electrophysiologic recordings using simultaneous gut-brain datasets.

2.
BMC Bioinformatics ; 25(1): 185, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730317

RESUMO

Surveillance for genetic variation of microbial pathogens, both within and among species, plays an important role in informing research, diagnostic, prevention, and treatment activities for disease control. However, large-scale systematic screening for novel genotypes remains challenging in part due to technological limitations. Towards addressing this challenge, we present an advancement in universal microbial high resolution melting (HRM) analysis that is capable of accomplishing both known genotype identification and novel genotype detection. Specifically, this novel surveillance functionality is achieved through time-series modeling of sequence-defined HRM curves, which is uniquely enabled by the large-scale melt curve datasets generated using our high-throughput digital HRM platform. Taking the detection of bacterial genotypes as a model application, we demonstrate that our algorithms accomplish an overall classification accuracy over 99.7% and perform novelty detection with a sensitivity of 0.96, specificity of 0.96 and Youden index of 0.92. Since HRM-based DNA profiling is an inexpensive and rapid technique, our results add support for the feasibility of its use in surveillance applications.


Assuntos
Genótipo , Aprendizado de Máquina , DNA Bacteriano/genética , Algoritmos , Desnaturação de Ácido Nucleico/genética
3.
Front Netw Physiol ; 4: 1354211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414636

RESUMO

Parkinson's disease (PD) is a chronic movement disorder characterized by a variety of motor and nonmotor comorbidities, including cognitive impairment, gastrointestinal (GI) dysfunction, and autonomic/sleep disturbances. Symptoms typically fluctuate with different settings and environmental factors and thus need to be consistently monitored. Current methods, however, rely on infrequent rating scales performed in clinic. The advent of wearable technologies presents a new avenue to track objective measures of PD comorbidities longitudinally and more frequently. This narrative review discusses and proposes emerging wearable technologies that can monitor manifestations of motor, cognitive, GI, and autonomic/sleep comorbidities throughout the daily lives of PD individuals. This can provide more wholistic insight into real-time physiological versus pathological function with the potential to better assess treatments during clinical trials and allow physicians to optimize treatment regimens. Additionally, this narrative review briefly examines novel applications of wearables as therapy for PD patients.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38083696

RESUMO

The parasympathetic nervous system is necessary to regulate both sleep and digestion. Investigating abnormalities during the controlled setting of sleep can shed light on digestion, specifically for patients with idiopathic gastroparesis. In this study, we specifically investigate heartbeat-derived parasympathetic activity during sleep at very low frequencies, relevant to sleep cycle regulation. To do this, we adapt a method that extracts both periodic and aperiodic information from the power spectral density and recognize that the aperiodic activity may contain information relevant to very low frequencies. After testing on both synthetic noise data (pink and white) and overnight data from seven healthy controls and idiopathic gastroparetics, we find that the healthy controls' low-frequency aperiodic activity reflects pink noise structure, while the majority of the patients' aperiodic activity reflects white noise structure. At these low frequencies, these differences suggest differences in autonomic sleep cycle regulation.Clinical Relevance- This methodology can be optimized to track the health of the parasympathetic nervous system and suggest whether individual disease etiology is autonomic-related.


Assuntos
Gastroparesia , Humanos , Gastroparesia/diagnóstico , Sono/fisiologia , Sistema Nervoso Autônomo/fisiologia , Sistema Nervoso Parassimpático
5.
bioRxiv ; 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37577464

RESUMO

Spontaneous neuronal network activity is essential in development of central and peripheral circuits, yet whether this is a feature of enteric nervous system development has yet to be established. Using ex vivo gastrointestinal (GI) motility assays with unbiased computational analyses, we identify a previously unknown pattern of spontaneous neurogenic GI motility. We further show that this motility is driven by cholinergic signaling, which may inform GI pharmacology for preterm patients.

6.
IEEE Trans Biomed Eng ; 70(12): 3342-3353, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37310840

RESUMO

OBJECTIVE: The goal of this study was to identify autonomic and gastric myoelectric biomarkers from throughout the day that differentiate patients with gastroparesis, diabetics without gastroparesis, and healthy controls, while providing insight into etiology. METHODS: We collected 19 24-hour recordings of electrocardiogram (ECG) and electrogastrogram (EGG) data from healthy controls and patients with diabetic or idiopathic gastroparesis. We used physiologically and statistically rigorous models to extract autonomic and gastric myoelectric information from the ECG and EGG data, respectively. From these, we constructed quantitative indices which differentiated the distinct groups and demonstrated their application in automatic classification paradigms and as quantitative summary scores. RESULTS: We identified several differentiators that separate healthy controls from gastroparetic patient groups, specifically around sleep and meals. We also demonstrated the downstream utility of these differentiators in automatic classification and quantitative scoring paradigms. Even with this small pilot dataset, automated classifiers achieved an accuracy of 79% separating autonomic phenotypes and 65% separating gastrointestinal phenotypes. We also achieved 89% accuracy separating controls from gastroparetic patients in general and 90% accuracy separating diabetics with and without gastroparesis. These differentiators also suggested varying etiologies for different phenotypes. CONCLUSION: The differentiators we identified were able to successfully distinguish between several autonomic and gastrointestinal (GI) phenotypes using data collected while at-home with non-invasive sensors. SIGNIFICANCE: Autonomic and gastric myoelectric differentiators, obtained using at-home recording of fully non-invasive signals, can be the first step towards dynamic quantitative markers to track severity, disease progression, and treatment response for combined autonomic and GI phenotypes.


Assuntos
Diabetes Mellitus , Gastroparesia , Humanos , Esvaziamento Gástrico/fisiologia , Encéfalo
7.
Laryngoscope ; 133(10): 2695-2703, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36734335

RESUMO

OBJECTIVE: Swallowing is a complex neuromuscular task. There is limited spatiotemporal data on normative surface electromyographic signal during swallow, particularly across standard textures. We hypothesize the pattern of electromyographic signal of the anterior neck varies cranio-caudally, that laterality can be evaluated, and categorization of bolus texture can be differentiated by high-density surface electromyography (HDsEMG) through signal analysis. METHODS: An HDsEMG grid of 20 electrodes captured electromyographic activity in eight healthy adult subjects across 240 total swallows. Participants swallowed five standard textures: saliva, thin liquid, puree, mixed consistency, and dry solid. Data were bandpass filtered, underwent functional alignment of signal, and then placed into binary classifier receiver operating characteristic (ROC) curves. Muscular activity was visualized by creating two-dimensional EMG heat maps. RESULTS: Signal analysis results demonstrated a positive correlation between signal amplitude and bolus texture. Greater differences of amplitude in the cranial most region of the array when compared to the caudal most region were noted in all subjects. Lateral comparison of the array revealed symmetric power levels across all subjects and textures. ROC curves demonstrated the ability to correctly classify textures within subjects in 6 of 10 texture comparisons. CONCLUSION: This pilot study suggests that utilizing HDsEMG during deglutition can noninvasively differentiate swallows of varying texture noninvasively. This may prove useful in future diagnostic and behavioral swallow applications. LEVEL OF EVIDENCE: 4 Laryngoscope, 133:2695-2703, 2023.


Assuntos
Transtornos de Deglutição , Deglutição , Adulto , Humanos , Projetos Piloto , Eletromiografia/métodos , Eletrodos
8.
Sensors (Basel) ; 22(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36501842

RESUMO

Early identification of infants at risk of neurodevelopmental delay is an essential public health aim. Such a diagnosis allows early interventions for infants that maximally take advantage of the neural plasticity in the developing brain. Using standardized physiological developmental tests, such as the assessment of neurophysiological response to environmental events using cardiac orienting responses (CORs), is a promising and effective approach for early recognition of neurodevelopmental delay. Previous CORs have been collected on children using large bulky equipment that would not be feasible for widespread screening in routine clinical visits. We developed a portable wireless electrocardiogram (ECG) system along with a custom application for IOS tablets that, in tandem, can extract CORs with sufficient physiologic and timing accuracy to reflect the well-characterized ECG response to both auditory and visual stimuli. The sensor described here serves as an initial step in determining the extent to which COR tools are cost-effective for the early screening of children to determine who is at risk of developing neurocognitive deficits and may benefit from early interventions. We demonstrated that our approach, based on a wireless heartbeat sensor system and a custom mobile application for stimulus display and data recording, is sufficient to capture CORs from infants. The COR monitoring approach described here with mobile technology is an example of a desired standardized physiologic assessment that is a cost-and-time efficient, scalable method for early recognition of neurodevelopmental delay.


Assuntos
Aplicativos Móveis , Tecnologia sem Fio , Lactente , Criança , Humanos , Eletrocardiografia/métodos , Frequência Cardíaca/fisiologia , Encéfalo
9.
Sensors (Basel) ; 22(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501942

RESUMO

Recent studies, using high resolution magnetoencephalography (MEG) and electrogastrography (EGG), have shown that during resting state, rhythmic gastric physiological signals are linked with cortical brain oscillations. Yet, gut-brain coupling has not been investigated with electroencephalography (EEG) during cognitive brain engagement or during hunger-related gut engagement. In this study in 14 young adults (7 females, mean ± SD age 25.71 ± 8.32 years), we study gut-brain coupling using simultaneous EEG and EGG during hunger and satiety states measured in separate visits, and compare responses both while resting as well as during a cognitively demanding working memory task. We find that EGG-EEG phase-amplitude coupling (PAC) differs based on both satiety state and cognitive effort, with greater PAC modulation observed in the resting state relative to working memory. We find a significant interaction between gut satiation levels and cognitive states in the left fronto-central brain region, with larger cognitive demand based differences in the hunger state. Furthermore, strength of PAC correlated with behavioral performance during the working memory task. Altogether, these results highlight the role of gut-brain interactions in cognition and demonstrate the feasibility of these recordings using scalable sensors.


Assuntos
Encéfalo , Cognição , Adulto Jovem , Feminino , Humanos , Adolescente , Adulto , Encéfalo/fisiologia , Cognição/fisiologia , Magnetoencefalografia/métodos , Descanso/fisiologia , Eletroencefalografia/métodos
10.
Sci Rep ; 12(1): 19467, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376365

RESUMO

This study introduces a flexible, adhesive-integrated electrode array that was developed to enable non-invasive monitoring of cervical nerve activity. The device uses silver-silver chloride as the electrode material of choice and combines it with an electrode array consisting of a customized biopotential data acquisition unit and integrated graphical user interface (GUI) for visualization of real-time monitoring. Preliminary testing demonstrated this electrode design can achieve a high signal to noise ratio during cervical neural recordings. To demonstrate the capability of the surface electrodes to detect changes in cervical neuronal activity, the cold-pressor test (CPT) and a timed respiratory challenge were employed as stressors to the autonomic nervous system. This sensor system recording, a new technique, was termed Cervical Electroneurography (CEN). By applying a custom spike sorting algorithm to the electrode measurements, neural activity was classified in two ways: (1) pre-to-post CPT, and (2) during a timed respiratory challenge. Unique to this work: (1) rostral to caudal channel position-specific (cephalad to caudal) firing patterns and (2) cross challenge biotype-specific change in average CEN firing, were observed with both CPT and the timed respiratory challenge. Future work is planned to develop an ambulatory CEN recording device that could provide immediate notification of autonomic nervous system activity changes that might indicate autonomic dysregulation in healthy subjects and clinical disease states.


Assuntos
Adesivos , Neurônios , Humanos , Eletrodos , Neurônios/fisiologia , Razão Sinal-Ruído , Sistema Nervoso Autônomo
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3665-3668, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086032

RESUMO

Actigraphy allows for the remote monitoring of subjects' activity for clinical and research purposes. However, most standard methods are built for proprietary measures from specific devices that are not widely used. In this study, we develop an algorithm for classifying sleep and awake using a single day of triaxial accelerometer data, which can be acquired from all smart devices. This algorithm consists of two stages, clustering and hidden Markov modeling, and outperforms standard algorithms in sensitivity (94%), specificity (93 %), and overall accuracy (93%) across seven subjects. This method can help automate actigraphy analyses at scale using widely available technology using even a single day's worth of data. Clinical Relevance- Automated monitoring of patients' activity at home can help track recovery trajectories after surgery and injury, disease progression, treatment response.


Assuntos
Actigrafia , Sono , Actigrafia/métodos , Algoritmos , Humanos , Polissonografia/métodos , Sono/fisiologia , Vigília/fisiologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-36086427

RESUMO

Cross frequency coupling (CFC) between electrophysiological signals in the brain has been observed and it's abnormalities have been observed in conditions such as Parkinson's disease and epilepsy. More recently, CFC has been observed in stomach-brain electrophysiologic studies and thus becomes an enticing possible target for diseases involving aberrations of the gut-brain axis. However, current methods of detecting coupling do not attempt to capture the underlying statistical relationships that give rise to this coupling. In this paper, we demonstrate a new method of calculating phase amplitude coupling by estimating the mutual information between phase and amplitude, using a flexible parametric modeling approach. Specifically, we develop an exponential generalized linear model (GLM) to model amplitude given phase, using a high dimensional basis of von-Mises function regressors and l1 regularized model selection. Using synthetically generated gut-brain coupled signals, we demonstrate that our method outperforms the existing gold-standard methods for detectable low-levels of phase amplitude coupling through receiver operating characteristic (ROC) curve analysis.


Assuntos
Encéfalo , Encéfalo/fisiologia , Modelos Lineares
13.
J Neurophysiol ; 128(3): 593-610, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35858125

RESUMO

Neurons are embedded in complex networks, where they participate in repetitive, coordinated interactions with other neurons. Neuronal spike timing is thus predictably constrained by a range of ionic currents that shape activity at both short (milliseconds) and longer (tens to hundreds of milliseconds) timescales, but we lack analytical tools to rigorously identify these relationships. Here, we innovate a modeling approach to test the relationship between oscillations in the local field potential (LFP) and neuronal spike timing. We use kernel density estimation to relate single neuron spike timing and the phase of LFP rhythms (in simulated and hippocampal CA1 neuronal spike trains). We then combine phase and short (3 ms) spike history information within a logistic regression framework ("phaseSH models"), and show that models that leverage refractory constraints and oscillatory phase information can effectively test whether-and the degree to which-rhythmic currents (as measured from the LFP) reliably explain variance in neuronal spike trains. This approach allows researchers to systematically test the relationship between oscillatory activity and neuronal spiking dynamics as they unfold over time and as they shift to adapt to distinct behavioral conditions.NEW & NOTEWORTHY Statistical models that incorporate neural spiking history and relationships to the phase of ongoing oscillations in the local field potential robustly capture and predict neuronal engagement in rhythmic processes. These models constitute a powerful tool to systematically test explicit hypotheses regarding the specific rhythmic currents that constrain neural spiking activity over time and during different behaviors.


Assuntos
Hipocampo , Neurônios , Potenciais de Ação , Modelos Neurológicos
14.
IEEE Trans Biomed Eng ; 69(11): 3313-3325, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35439119

RESUMO

OBJECTIVE: Gastric functional and motility disorders are highly prevalent, with gastroparesis (GP) and functional dyspepsia (FD), affecting 1.5-3% and 10% of the population, respectively. Multiple disease etiologies with overlapping symptoms, such as antral hypomotility, pylorospasm, autonomic dysfunction, and gastric myoelectric dysfunction underlie GP and FD. There is an unmet need to differentiate these etiologies non-invasively to tailor treatment strategies and predict treatment response. METHODS: We performed cutaneous high-resolution electrogastrogram (HR-EGG) recordings on 32 human subjects (controls, GP, and FD) and computed gastric slow wave propagation patterns. We implemented robust regression and clustering methods to identify one group of patients with symptoms well explained by spatial slow wave features and another with symptom severity significantly exceeding predictions from spatial slow wave features. Five patients were re-assessed with validated symptom questionnaires after pyloric and prokinetic interventions. RESULTS: A group of seven patients was identified whose spatial slow wave features lie within the same range as control subjects but whose symptom severity significantly exceeded what is predicted from spatial slow wave features. We hypothesize that gastric myoelectric dysfunction is not a prominent disease etiology in this group. A highly accurate regression holds in the other group of patients (r=0.8). Of the patients with repeat questionnaires, patients with symptom severity exceeding the regression line reported symptom improvement, whereas patients with symptoms in close proximity to the regression line experienced no improvement. CONCLUSION: These findings suggest that patients with symptom severity significantly exceeding the robust regression line have symptoms that cannot be explained by gastric myoelectric dysfunction alone, and vice versa. SIGNIFICANCE: This methodology may provide clinicians with an opportunity to screen patients to determine when existing interventions will be effective, and on the flipside, when slow wave restoration interventions, such as gastric neuromodulation, may be most effective in improving symptoms and quality of life.


Assuntos
Dispepsia , Gastroparesia , Humanos , Qualidade de Vida , Dispepsia/diagnóstico , Esvaziamento Gástrico/fisiologia , Motilidade Gastrointestinal/fisiologia
15.
Sci Rep ; 11(1): 24376, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934065

RESUMO

Home health monitoring has the potential to improve outpatient management of chronic cardiopulmonary diseases such as heart failure. However, it is often limited by the need for adherence to self-measurement, charging and self-application of wearables, or usage of apps. Here, we describe a non-contact, adherence-independent sensor, that when placed beneath the legs of a patient's home bed, longitudinally monitors total body weight, detailed respiratory signals, and ballistocardiograms for months, without requiring any active patient participation. Accompanying algorithms separate weight and respiratory signals when the bed is shared by a partner or a pet. Validation studies demonstrate quantitative equivalence to commercial sensors during overnight sleep studies. The feasibility of detecting obstructive and central apneas, cardiopulmonary coupling, and the hemodynamic consequences of non-sustained ventricular tachycardia is also established. Real-world durability is demonstrated by 3 months of in-home monitoring in an example patient with heart failure and ischemic cardiomyopathy as he recovers from coronary artery bypass grafting surgery. BedScales is the first sensor to measure adherence-independent total body weight as well as longitudinal cardiopulmonary physiology. As such, it has the potential to create a multidimensional picture of chronic disease, learn signatures of impending hospitalization, and enable optimization of care in the home.


Assuntos
Peso Corporal , Cardiomiopatias/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Monitorização Fisiológica/métodos , Isquemia Miocárdica/fisiopatologia , Sono/fisiologia , Algoritmos , Leitos , Cardiomiopatias/terapia , Doença Crônica , Ponte de Artéria Coronária/métodos , Insuficiência Cardíaca/terapia , Frequência Cardíaca , Humanos , Estudos Longitudinais , Isquemia Miocárdica/terapia , Polissonografia/métodos
16.
NPJ Digit Med ; 4(1): 142, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593972

RESUMO

Machine learning has the potential to change the practice of medicine, particularly in areas that require pattern recognition (e.g. radiology). Although automated classification is unlikely to be perfect, few modern machine learning tools have the ability to assess their own classification confidence to recognize uncertainty that might need human review. Using automated single-channel sleep staging as a first implementation, we demonstrated that uncertainty information (as quantified using Shannon entropy) can be utilized in a "human in the loop" methodology to promote targeted review of uncertain sleep stage classifications on an epoch-by-epoch basis. Across 20 sleep studies, this feedback methodology proved capable of improving scoring agreement with the gold standard over automated scoring alone (average improvement in Cohen's Kappa of 0.28), in a fraction of the scoring time compared to full manual review (60% reduction). In summary, our uncertainty-based clinician-in-the-loop framework promotes the improvement of medical classification accuracy/confidence in a cost-effective and economically resourceful manner.

17.
Bioelectron Med ; 7(1): 12, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34425917

RESUMO

BACKGROUND: Gastroparesis is a debilitating disease that is often refractory to pharmacotherapy. While gastric electrical stimulation has been studied as a potential treatment, current devices are limited by surgical complications and an incomplete understanding of the mechanism by which electrical stimulation affects physiology. METHODS: A leadless inductively-powered pacemaker was implanted on the gastric serosa in an anesthetized pig. Wireless pacing was performed at transmitter-to-receiver distances up to 20 mm, frequency of 0.05 Hz, and pulse width of 400 ms. Electrogastrogram (EGG) recordings using cutaneous and serosal electrode arrays were analyzed to compute spectral and spatial statistical parameters associated with the slow wave. RESULTS: Our data demonstrated evident change in EGG signal patterns upon initiation of pacing. A buffer period was noted before a pattern of entrainment appeared with consistent and low variability in slow wave direction. A spectral power increase in the EGG frequency band during entrainment also suggested that pacing increased strength of the slow wave. CONCLUSION: Our preliminary in vivo study using wireless pacing and concurrent EGG recording established the foundations for a minimally invasive approach to understand and optimize the effect of pacing on gastric motor activity as a means to treat conditions of gastric dysmotility.

18.
J Vis Exp ; (167)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33522514

RESUMO

Controlling biological processes using light has increased the accuracy and speed with which researchers can manipulate many biological processes. Optical control allows for an unprecedented ability to dissect function and holds the potential for enabling novel genetic therapies. However, optogenetic experiments require adequate light sources with spatial, temporal, or intensity control, often a bottleneck for researchers. Here we detail how to build a low-cost and versatile LED illumination system that is easily customizable for different available optogenetic tools. This system is configurable for manual or computer control with adjustable LED intensity. We provide an illustrated step-by-step guide for building the circuit, making it computer-controlled, and constructing the LEDs. To facilitate the assembly of this device, we also discuss some basic soldering techniques and explain the circuitry used to control the LEDs. Using our open-source user interface, users can automate precise timing and pulsing of light on a personal computer (PC) or an inexpensive tablet. This automation makes the system useful for experiments that use LEDs to control genes, signaling pathways, and other cellular activities that span large time scales. For this protocol, no prior expertise in electronics is required to build all the parts needed or to use the illumination system to perform optogenetic experiments.


Assuntos
Iluminação , Optogenética/métodos , Eletricidade , Eletrônica , Ensaios Enzimáticos , Regulação da Expressão Gênica , Células HEK293 , Humanos , Luz , Luciferases/metabolismo , Software
19.
Bioinformatics ; 36(22-23): 5337-5343, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33355665

RESUMO

MOTIVATION: The need to rapidly screen complex samples for a wide range of nucleic acid targets, like infectious diseases, remains unmet. Digital High-Resolution Melt (dHRM) is an emerging technology with potential to meet this need by accomplishing broad-based, rapid nucleic acid sequence identification. Here, we set out to develop a computational framework for estimating the resolving power of dHRM technology for defined sequence profiling tasks. By deriving noise models from experimentally generated dHRM datasets and applying these to in silico predicted melt curves, we enable the production of synthetic dHRM datasets that faithfully recapitulate real-world variations arising from sample and machine variables. We then use these datasets to identify the most challenging melt curve classification tasks likely to arise for a given application and test the performance of benchmark classifiers. RESULTS: This toolbox enables the in silico design and testing of broad-based dHRM screening assays and the selection of optimal classifiers. For an example application of screening common human bacterial pathogens, we show that human pathogens having the most similar sequences and melt curves are still reliably identifiable in the presence of experimental noise. Further, we find that ensemble methods outperform whole series classifiers for this task and are in some cases able to resolve melt curves with single-nucleotide resolution. AVAILABILITY AND IMPLEMENTATION: Data and code available on https://github.com/lenlan/dHRM-noise-modeling. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

20.
Cell Rep Methods ; 1(8)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35079727

RESUMO

Cell communication underlies emergent functions in diverse cell types and tissues. Recent evidence suggests that macrophages are organized in communicating networks, but new tools are needed to quantitatively characterize the resulting cellular conversations. Here, we infer cell communication from spatiotemporal correlations of intracellular calcium dynamics that are non-destructively imaged across cell populations expressing genetically encoded calcium indicators. We describe a hematopoietic calcium reporter mouse (Csf1rCreGCaMP5fl) and a computational analysis pipeline for inferring communication between reporter cells based on "excess synchrony." We observed signals suggestive of cell communication in macrophages treated with immune-stimulatory DNA in vitro and tumor-associated immune cells imaged in a dorsal window chamber model in vivo. Together, the methods described here expand the toolkit for discovery of cell communication events in macrophages and other immune cells.


Assuntos
Cálcio da Dieta , Macrófagos , Animais , Camundongos , Cálcio da Dieta/metabolismo , Comunicação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA