Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Opt Express ; 7(5): 1755-67, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27231619

RESUMO

Optical aberrations degrade image quality in fluorescence microscopy, including for single-molecule based techniques. These depend on post-processing to localize individual molecules in an image series. Using simulated data, we show the impact of optical aberrations on localization success, accuracy and precision. The peak intensity and the proportion of successful localizations strongly reduces when the aberration strength is greater than 1.0 rad RMS, while the precision of each of those localisations is halved. The number of false-positive localisations exceeded 10% of the number of true-positive localisations at an aberration strength of only ~0.6 rad RMS when using the ThunderSTORM package, but at greater than 1.0 rad RMS with the Radial Symmetry package. In the presence of coma, the localization error reaches 100 nm at ~0.6 rad RMS of aberration strength. The impact of noise and of astigmatism for axial resolution are also considered. Understanding the effect of aberrations is crucial when deciding whether the addition of adaptive optics to a single-molecule microscope could significantly increase the information obtainable from an image series.

2.
Methods ; 88: 76-80, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25980369

RESUMO

Although considerable progress has been made in imaging distances in cells below the diffraction limit using FRET and super-resolution microscopy, methods for determining the separation of macromolecules in the 10-50 nm range have been elusive. We have developed fluorophore localisation imaging with photobleaching (FLImP), based on the quantised bleaching of individual protein-bound dye molecules, to quantitate the molecular separations in oligomers and nanoscale clusters. We demonstrate the benefits of using our method in studying the nanometric organisation of the epidermal growth factor receptor in cells.


Assuntos
Receptores ErbB/química , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Fotodegradação , Animais , Cricetinae , Feminino , Humanos , Substâncias Macromoleculares
3.
PLoS One ; 7(4): e36265, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558412

RESUMO

BACKGROUND: The autofluorescence background of biological samples impedes the detection of single molecules when imaging. The most common method of reducing the background is to use evanescent field excitation, which is incompatible with imaging beyond the surface of biological samples. An alternative would be to use probes that can be excited in the near infra-red region of the spectrum, where autofluorescence is low. Such probes could also increase the number of labels that can be imaged in multicolour single molecule microscopes. Despite being widely used in ensemble imaging, there is a currently a shortage of information available for selecting appropriate commercial near infra-red dyes for single molecule work. It is therefore important to characterise available near infra-red dyes relevant to multicolour single molecule imaging. METHODOLOGY/PRINCIPAL FINDINGS: A range of commercially available near infra-red dyes compatible with multi-colour imaging was screened to find the brightest and most photostable candidates. Image series of immobilised samples of the brightest dyes (Alexa 700, IRDye 700DX, Alexa 790 and IRDye 800CW) were analysed to obtain the mean intensity of single dye molecules, their photobleaching rates and long period blinking kinetics. Using the optimum dye pair, we have demonstrated for the first time widefield, multi-colour, near infra-red single molecule imaging using a supercontinuum light source in MCF-7 cells. CONCLUSIONS/SIGNIFICANCE: We have demonstrated that near infra-red dyes can be used to avoid autofluorescence background in samples where restricting the illumination volume of visible light fails or is inappropriate. We have also shown that supercontinuum sources are suited to single molecule multicolour imaging throughout the 470-1000 nm range. Our measurements of near infra-red dye properties will enable others to select optimal dyes for single molecule imaging.


Assuntos
Corantes Fluorescentes/metabolismo , Raios Infravermelhos , Imagem Molecular/métodos , Linhagem Celular Tumoral , Cor , Corantes Fluorescentes/química , Humanos , Espectrometria de Fluorescência
4.
Biomed Opt Express ; 3(3): 400-6, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22435089

RESUMO

Multicolour single molecule fluorescence imaging enables the study of multiple proteins in the membranes of living cells. We describe the use of a supercontinuum laser as the excitation source, show its comparability with multiplexed single-wavelength lasers and demonstrate that it can be used to study membrane proteins such as the ErbB receptor family. We discuss the benefits of white-light sources for single molecule fluorescence, in particular their ease of use and the freedom to use the most appropriate dye without being constrained by available laser wavelengths.

5.
Rev Sci Instrum ; 82(9): 093705, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21974592

RESUMO

Optics clustered to output unique solutions (OCTOPUS) is a microscopy platform that combines single molecule and ensemble imaging methodologies. A novel aspect of OCTOPUS is its laser excitation system, which consists of a central core of interlocked continuous wave and pulsed laser sources, launched into optical fibres and linked via laser combiners. Fibres are plugged into wall-mounted patch panels that reach microscopy end-stations in adjacent rooms. This allows multiple tailor-made combinations of laser colours and time characteristics to be shared by different end-stations minimising the need for laser duplications. This setup brings significant benefits in terms of cost effectiveness, ease of operation, and user safety. The modular nature of OCTOPUS also facilitates the addition of new techniques as required, allowing the use of existing lasers in new microscopes while retaining the ability to run the established parts of the facility. To date, techniques interlinked are multi-photon/multicolour confocal fluorescence lifetime imaging for several modalities of fluorescence resonance energy transfer (FRET) and time-resolved anisotropy, total internal reflection fluorescence, single molecule imaging of single pair FRET, single molecule fluorescence polarisation, particle tracking, and optical tweezers. Here, we use a well-studied system, the epidermal growth factor receptor network, to illustrate how OCTOPUS can aid in the investigation of complex biological phenomena.


Assuntos
Lasers , Microscopia/instrumentação , Fenômenos Ópticos , Animais , Linhagem Celular , Sobrevivência Celular , Cor , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Cinética , Fótons , Conformação Proteica , Transporte Proteico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA