Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sci Total Environ ; 885: 163890, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37142032

RESUMO

Sediments are complex heterogeneous matrices allowing to some extent the recording of past environmental conditions by integrating sediment characteristics, contamination and the microbial community assembly. In aquatic environments, abiotic environmental filtering is considered the primary deterministic mechanism shaping microbial communities in sediments. However, the number and relative contributions of geochemical and physical factors associated with biotic parameters (reservoir of microorganisms) complicate our understanding of community assembly dynamics. In this study, the sampling of a sedimentary archive in a site alternately subjected to contrasting inputs from the Eure and the Seine Rivers allowed us to study the response of microbial communities to changes in depositional environment over time. The coupling of the quantification and sequencing of the gene encoding the 16S rRNA with analyses of grain size, organic matter and major and trace metal contents demonstrated that microbial communities reflected contrasting sedimentary inputs over time. Total organic carbon (TOC) was the main factor influencing microbial biomass, while the quantity and quality of organic matter (R400, RC/TOC), major elements (i.e. Al, Fe, Ti) and trace metals (i.e. Zn, Pb, Cu, Cr, Ni, As, Co, Ag, Sb) shaped the structure of the microbial community. Besides the effect of geochemical factors, a specific microbial signature was associated with the contrasting sedimentary sources, highlighting the importance of the microbial reservoir in the assembly of microbial communities. Indeed, the main genera identified in the facies influenced by the Eure River were affiliated with the phyla Desulfobacterota (Syntrophus, Syntrophorhabdus, Smithella, Desulfatiglans), Firmicutes (Clostridium_sensu_stricto_1), Proteobacteria (Crenothrix), Verrucomicrobiota (Luteolibacter), while the contributions of the Seine River were characterised by some halophilic genera Salirhabdus (Firmicutes), Haliangium (Myxococcota) and SCGC-AB-539-J10 (Chloroflexi). This study sheds light on the overall processes determining the assembly of microbial communities in sediments and the importance of associating geochemical factors with reservoirs of microorganisms inherited from sediment sources.


Assuntos
Metais Pesados , Microbiota , Oligoelementos , Poluentes Químicos da Água , Sedimentos Geológicos/química , RNA Ribossômico 16S , Bactérias , Rios/química , Oligoelementos/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Metais Pesados/análise
2.
Aquat Toxicol ; 259: 106546, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37120957

RESUMO

Chemical contamination is a common threat to biota thriving in estuarine and coastal ecosystems. Of particular importance is that trace metals tend to accumulate and exert deleterious effects on small invertebrates such as zooplankton, which are essential trophic links between phytoplankton and higher-level consumers in aquatic food webs. Beyond the direct effects of the contamination, we hypothesized that metal exposure could also affect the zooplankton microbiota, which in turn might further impair host fitness. To assess this assumption, copepods (Eurytemora affinis) were sampled in the oligo-mesohaline zone of the Seine estuary and exposed to dissolved copper (25 µg.L-1) over a 72-hour time period. The copepod response to copper treatment was assessed by determining transcriptomic changes in E. affinis and the alteration of its microbiota. Unexpectedly, very few genes were differentially expressed in the copper-treated copepods compared to the controls for both male and female samples, while a clear dichotomy between sex was highlighted with 80% of the genes showing sex-biased expression. In contrast, copper increased the taxonomic diversity of the microbiota and resulted in substantial compositional changes at both the phyla and genus levels. Phylogenetic reconstruction of the microbiota further suggested that copper mitigated the phylogenetic relatedness of taxa at the basal tree structure of the phylogeny, whereas it strengthened it at the terminal branches. Increased terminal phylogenetic clustering in the copper-treated copepods coincided with higher proportions of bacterial genera previously identified as copper resistant (e.g., Pseudomonas, Acinetobacter, Alkanindiges, Colwellia) and a higher relative abundance of the copAox gene encoding a periplasmic inducible multi-copper oxidase. The enrichment in micro-organisms likely to perform copper sequestration and/or enzymatic transformation processes, underlines the need to consider the microbial component during evaluation of the vulnerability of zooplankton to metallic stress.


Assuntos
Copépodes , Microbiota , Poluentes Químicos da Água , Animais , Transcriptoma , Poluentes Químicos da Água/toxicidade , Filogenia
3.
Sci Rep ; 12(1): 11084, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773378

RESUMO

Although parasite infection and pollution are common threats facing wild populations, the response of the gut microbiota to the joint impact of these stressors remains largely understudied. Here, we experimentally investigated the effects of exposure to Polycyclic Aromatic Hydrocarbons (PAHs) and infection by a common acanthocephalan intestinal parasite (Pomphorhynchus sp.) on the gut microbial flora of a freshwater fish, the European chub (Squalius cephalus). Naturally infected or uninfected individuals were exposed to PAHs at environmentally realistic concentrations over a five-week period. Characterization of the gut bacterial community through 16S rRNA gene amplicon sequencing revealed that parasitic infection was a more structuring factor of bacterial diversity and composition than PAH exposure. Specifically, chub infected by Pomphorhynchus sp. harbored significantly less evenly represented gut bacterial communities than the uninfected ones. In addition, substantial changes in sequence abundance were observed within the main bacterial phyla, including the Firmicutes, Fusobacteriota, Actinobacteriota, and Proteobacteria. Again, these compositional changes correlated with host infection with Pomphorhynchus sp., confirming its pivotal role in gut microbial assemblage. Overall, these results highlight the importance of defining the parasitic status of individuals when conducting microbial ecotoxicological analyses at the digestive tract level, as this should lead to better understanding of microbiota modulations and help to identify microbial markers specifically associated with chemicals.


Assuntos
Acantocéfalos , Cyprinidae , Microbioma Gastrointestinal , Hidrocarbonetos Policíclicos Aromáticos , Acantocéfalos/fisiologia , Animais , Bactérias/genética , Cyprinidae/genética , Disbiose , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , RNA Ribossômico 16S/genética
4.
Sci Total Environ ; 767: 145425, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636795

RESUMO

The bTPMT (bacterial thiopurine S-methyltransferase), encoded by the tpm gene, can detoxify metalloid-containing oxyanions and xenobiotics. The hypothesis of significant relationships between tpm distribution patterns and chemical pollutants found in urban deposits was investigated. The tpm gene was found conserved among eight bacterial phyla with no sign of horizontal gene transfers but a predominance among gammaproteobacteria. A DNA metabarcoding approach was designed for tracking tpm-harboring bacteria among polluted urban deposits and sediments recovered for more than six years in a detention basin (DB). This DB recovers runoff waters and sediments from a zone of high commercial activities. The PCR products from DB samples led to more than 540,000 tpm reads after DADA2 or MOTHUR bio-informatic manipulations that were allocated to more than 88 and less than 634 sequence variants per sample. The tpm community patterns were significantly different between the recent urban deposits and those that had accumulated for more than 2 years in the DB, and between those of the DB surface and the DB settling pit. These groups of samples had distinct mixture of priority pollutants. Significant relationships between tpm ordination patterns, sediment accumulation time periods and location, and concentrations in PAH, chlorpyrifos, and 4-nonylphenols (NP) were observed. These correlations matched the higher occurrences of, among others, Aeromonas, Pseudomonas, and Xanthomonas tpm-harboring bacteria in recent urban DB deposits more contaminated with chrysene and alkylphenol ethoxylates. Highly significant drops in tpm reads allocated to Aeromonas species were recorded in the oldest DB sediments accumulating naphthalene and metallic pollutants. Degraders of urban pollutants such as P. aeruginosa and P. putida showed conserved distribution patterns over time but P. syringae phytopathogens were more abundant in the oldest sediments. TPMT-harboring bacteria can be used to assess the incidence of high risk priority pollutants on environmental systems.


Assuntos
Bactérias , Poluentes Químicos da Água , Bactérias/enzimologia , Bactérias/genética , Código de Barras de DNA Taxonômico , Monitoramento Ambiental , Sedimentos Geológicos , Metiltransferases , Análise Espaço-Temporal , Poluentes Químicos da Água/análise
5.
Microb Ecol ; 82(2): 523-536, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33415385

RESUMO

Changes in the state of rivers resulting from the activity and expansion of urban areas are likely to affect aquatic populations by increasing stress and disease, with the microbiota playing a potentially important intermediary role. Unraveling the dynamics of microbial flora is therefore essential to better apprehend the impact of anthropogenic disturbances on the health of host populations and the ecological integrity of hydrosystems. In this context, the present study simultaneously examined changes in the microbial communities associated with mucosal skin and gut tissues of eight fish species along an urbanization gradient in the Orge River (France). 16S rRNA gene metabarcoding revealed that the structure and composition of the skin microbiota varied substantially along the disturbance gradient and to a lesser extent according to fish taxonomy. Sequences affiliated with the Gammaproteobacteria, in particular the genus Aeromonas, prevailed on fish caught in the most urbanized areas, whereas they were nearly absent upstream. This rise of opportunistic taxa was concomitant with a decline in phylogenetic diversity, suggesting more constraining environmental pressures. In comparison, fish gut microbiota varied much more moderately with the degree of urbanization, possibly because this niche might be less directly exposed to environmental stressors. Co-occurrence networks further identified pairs of associated bacterial taxa, co-existing more or less often than expected at random. Few correlations could be identified between skin and gut bacterial taxa, supporting the assumption that these two microbial niches are disconnected and do not suffer from the same vulnerability to anthropic pressures.


Assuntos
Bactérias , Urbanização , Animais , Bactérias/genética , Proliferação de Células , Filogenia , RNA Ribossômico 16S/genética
6.
Mol Ecol Resour ; 19(6): 1552-1564, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31482665

RESUMO

Co-occurrence network analysis based on amplicon sequences is increasingly used to study microbial communities. Patterns of co-existence or mutual exclusion between pairs of taxa are often interpreted as reflecting positive or negative biological interactions. However, other assembly processes can underlie these patterns, including species failure to reach distant areas (dispersal limitation) and tolerate local environmental conditions (habitat filtering). We provide a tool to quantify the relative contribution of community assembly processes to microbial co-occurrence patterns, which we applied to explore soil bacterial communities in two dry ecosystems. First, we sequenced a bacterial phylogenetic marker in soils collected across multiple plots. Second, we inferred co-occurrence networks to identify pairs of significantly associated taxa, either co-existing more (aggregated) or less often (segregated) than expected at random. Third, we assigned assembly processes to each pair: patterns explained based on spatial or environmental distance were ascribed to dispersal limitation (2%-4%) or habitat filtering (55%-77%), and the remaining to biological interactions. Finally, we calculated the phylogenetic distance between taxon pairs to test theoretical expectations on the linkages between phylogenetic patterns and assembly processes. Aggregated pairs were more closely related than segregated pairs. Furthermore, habitat-filtered aggregated pairs were closer relatives than those assigned to positive interactions, consistent with phylogenetic niche conservatism and cooperativism among distantly related taxa. Negative interactions resulted in equivocal phylogenetic signatures, probably because different competitive processes leave opposing signals. We show that microbial co-occurrence networks mainly reflect environmental tolerances and propose that incorporating measures of phylogenetic relatedness to networks might help elucidate ecologically meaningful patterns.


Assuntos
Bactérias/genética , Consórcios Microbianos/genética , Microbiota/genética , Algoritmos , Biodiversidade , Ecologia/métodos , Ecossistema , Filogenia , Solo , Microbiologia do Solo
7.
J Environ Manage ; 241: 284-292, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31009816

RESUMO

Plant species identity is assumed to be a major driver of belowground microbial diversity and composition. However, diagnosing which plant functional traits are responsible for shaping microbial communities remains elusive. Primary succession on barren metalliferous mining substrates was selected as the framework to study above-belowground interactions, and plant functional traits that lead the successional trajectories of soil bacterial communities were identified. The impact of the plant functional group (i.e. trees, shrubs, dwarf shrubs, perennial grasses), a trait integrating the life span and morphological structure, on the bacterial primary succession was monitored. Bacterial diversity and composition was estimated along plant size gradients including over 90 scattered patches ranging from seedlings to mature multispecific patches. Soil bacterial diversity was affected by heavy metals levels and increased towards higher resource availability underneath mature patches, with stress-tolerant heterotrophs and phototrophs being replaced by competitive heterotrophs. The plant functional group modulated these general patterns and shrubs had the greatest impact belowground by inducing the largest increase in soil fertility. Functional traits related to leaf decomposability and root architecture further determined the composition and structure of bacterial communities. These results underline the importance of plant functional traits in the assembly of soil bacterial communities, and can help guiding restoration of degraded lands.


Assuntos
Microbiologia do Solo , Solo , Bactérias , Mineração , Plantas
8.
Res Microbiol ; 169(1): 44-51, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28951230

RESUMO

Mercury methylation and demethylation processes govern the fate of methylmercury in aquatic ecosystems. Under anoxic conditions, methylation activity is mainly of biological origin and is often the result of sulfate-reducing bacteria. In this study, the use of a luminescent biosensor for screening methylmercury production was validated by exposing the reporter strain to methylating or non-methylating Desulfovibrio strains. The sensitivity of the biosensor to methylmercury was shown to depend on sulfate-reducing bacterial growth conditions. Bioluminescence was measured using 1-10 mM of sulfides. As the sulfide level increased, luminescence decreased by 40-70%, respectively. Nevertheless, assuming an average of 5 mM of sulfide produced during sulfate-reducing growth, a mercury methylation potential of over 4% was detected when using 185 nM of inorganic mercury. Due to technical limitations, mercury speciation has, to date, only been investigated in a small number of bacterial strains, and no consistent phylogenetic distribution has been identified. Here, the biosensor was further used to assess the Hg methylation capacities of an additional 21 strains related to the Desulfobulbaceae. Seven of them were identified as methylmercury producers. Cultivation procedures combined with bacterial biosensors could provide innovative tools to identify new methylator clades amongst the prokaryotes.


Assuntos
Desulfovibrio/metabolismo , Mercúrio/metabolismo , Técnicas Biossensoriais , Desulfovibrio/classificação , Desulfovibrio/genética , Desulfovibrio/isolamento & purificação , Sedimentos Geológicos/microbiologia , Mercúrio/química , Metilação , Filogenia , Sulfatos/metabolismo , Sulfetos/metabolismo
9.
Environ Sci Pollut Res Int ; 24(23): 19223-19233, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28664497

RESUMO

Macrophyte floating roots are considered as hotspots for methylmercury (MeHg) production in aquatic ecosystems through microbial activity. Nevertheless, very little is known about periphyton bacterial communities and mercury (Hg) methylators in such ecological niches. The ability to methylate inorganic Hg is broadly distributed among prokaryotes; however, sulfate-reducers have been reported to be the most important MeHg producers in macrophyte floating roots. In the present work, the periphyton bacterial communities colonizing Ludwigia sp. floating roots were investigated through molecular methods. Among the 244 clones investigated, anaerobic microorganisms associated with the sulfur biogeochemical cycle were identified. Notably, members of the sulfur-oxidizing prokaryotes and the anoxygenic, purple non-sulfur bacteria (Rhodobacteraceae, Comamonadaceae, Rhodocyclaceae, Hyphomicrobiaceae) and the sulfate reducers (Desulfobacteraceae, Syntrophobacteraceae, and Desulfobulbaceae) were detected. In addition, 15 sulfate-reducing strains related to the Desulfovibrionaceae family were isolated and their Hg-methylation capacity was tested using a biosensor. The overall results confirmed that Hg methylation is a strain-specific process since the four strains identified as new Hg-methylators were closely related to non-methylating isolates. This study highlights the potential involvement of periphytic bacteria in Hg methylation when favorable environmental conditions are present in such ecological micro-niches.


Assuntos
Lagos/química , Mercúrio/análise , Compostos de Metilmercúrio/análise , Perifíton , Raízes de Plantas/microbiologia , Poluentes Químicos da Água/análise , Biodiversidade , França , Espécies Introduzidas , Lagos/microbiologia , Metilação , Onagraceae/química , Onagraceae/microbiologia , Filogenia , Raízes de Plantas/química , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/isolamento & purificação
10.
J Microbiol Methods ; 138: 100-105, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28571925

RESUMO

The development of new high-throughput cultivation methods aims to increase the isolation efficiency as compared to standard techniques that often require enrichment procedures to compensate the low microbial recovery. In the current study, estuarine sulfate-reducing bacteria were isolated using an anaerobic isolation procedure in 384-well microplates. Ninety-nine strains were recovered from initial sediments. Isolates were identified according to their partial 16S rRNA sequences and clustered into 13 phylotypes. Besides, the increase in species richness obtained through enrichments or resampling was investigated. Forty-four enrichment procedures were conducted and shifts in sulfate-reducing bacterial communities were investigated through dsrAB gene fingerprinting. Despite efforts in conducting numerous enrichment conditions only few of them were statistically different from initial sample. The cultural diversity obtained from 3 of the most divergent enrichments, as well as from resampled sediments equally contributed to raise the sulfate-reducing diversity up to 22 phylotypes. Enrichments (selection of metabolism) or resampling (transient populations and micro-heterogeneity) may still be helpful to assess new microbial phylotypes. Nevertheless, all the newly cultivated strains were all representatives of minor Operational Taxonomic Units and could eventually be recovered by maintaining high-throughput isolation effort from the initial sediments.

11.
Microb Ecol ; 73(1): 39-49, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581035

RESUMO

Estuaries are highly dynamic ecosystems in which freshwater and seawater mix together. Depending on tide and river inflows, particles originating from rivers or from the remobilization of sediments accumulate in the water column. Due to the salinity gradient and the high heterotrophic activity in the estuarine plume, hypoxic and anoxic microniches may form in oxygenated waters, sustaining favorable conditions for resuspended anaerobic microorganisms. In this context, we tested the hypothesis that anaerobic sulfate-reducing prokaryotes may occur in the water column of the Adour River. Using 16S ribosomal RNA (rRNA) and dsrAB-based terminal restriction fragment length polymorphism (T-RFLP) techniques, we characterized total prokaryotic and sulfate-reducing communities along a gradient from estuarine to marine bay waters. Sulfate-reducing prokaryotes were further characterized by the description of dsrB genes and the cultivation of sulfidogenic anaerobic microorganisms. As a result, physical-chemical parameters had a significant effect on water bacterial diversity and community structure along the studied gradient. The concentration of cultured sulfidogenic microorganisms ranged from 1 to 60 × 103 cells l-1 in the water column. Sulfate-reducing prokaryotes occurring in estuarine waters were closely related to microorganisms previously detected in freshwater sediments, suggesting an estuarine origin, mainly by the remobilization of the sediments. In the marine bay station, sediment-derived sulfate-reducing prokaryotes were not cultured anymore, probably due to freshwater dilution, increasing salinity and extended oxic stress. Nevertheless, isolates related to the type strain Desulfovibrio oceani were cultured from the diluted plume and deep marine waters, indicating the occurrence of autochthonous sulfate-reducing bacteria offshore.


Assuntos
Baías/microbiologia , Desulfovibrio/genética , Desulfovibrio/isolamento & purificação , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Sulfatos/metabolismo , Biodiversidade , Desulfovibrio/classificação , Desulfovibrio/metabolismo , Ecossistema , Estuários , Água Doce/microbiologia , Oxirredução , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Salinidade
12.
J Microbiol Methods ; 110: 92-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25578508

RESUMO

The development of new high-throughput cultivation methods aims to increase the isolation efficiency as compared to standard techniques that often require enrichment procedures to compensate the low microbial recovery. In the current study, estuarine sulfate-reducing bacteria were isolated using an anaerobic isolation procedure in 384-well microplates. Ninety-nine strains were recovered from initial sediments. Isolates were identified according to their partial 16S rRNA sequences and clustered into 13 phylotypes. Besides, the increase in species richness obtained through enrichments or resampling was investigated. Forty-four enrichment procedures were conducted and shifts in sulfate-reducing bacterial communities were investigated through dsrAB gene fingerprinting. Despite efforts in conducting numerous enrichment conditions only few of them were statistically different from initial sample. The cultural diversity obtained from 3 of the most divergent enrichments, as well as from resampled sediments equally contributed to raise the sulfate-reducing diversity up to 22 phylotypes. Enrichments (selection of metabolism) or resampling (transient populations and micro-heterogeneity) may still be helpful to assess new microbial phylotypes. Nevertheless, all the newly cultivated strains were all representatives of minor Operational Taxonomic Units and could eventually be recovered by maintaining high-throughput isolation effort from the initial sediments.


Assuntos
DNA Bacteriano/genética , Deltaproteobacteria/isolamento & purificação , Variação Genética , Sedimentos Geológicos/microbiologia , Sulfatos/metabolismo , Deltaproteobacteria/genética , Deltaproteobacteria/crescimento & desenvolvimento , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Extremophiles ; 18(2): 385-98, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24446065

RESUMO

Los Azufres spa consists of a hydrothermal spring system in the Mexican Volcanic Axis. Five samples (two microbial mats, two mud pools and one cenote water), characterized by high acidity (pH between 1 and 3) and temperatures varying from 27 to 87 °C, were investigated for their microbial diversity by Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and 16S rRNA gene library analyses. These data are the first to describe microbial diversity from Los Azufres geothermal belt. The data obtained from both approaches suggested a low bacterial diversity in all five samples. Despite their proximity, the sampling points differed by their physico-chemical conditions (mainly temperature and matrix type) and thus exhibited different dominant bacterial populations: anoxygenic phototrophs related to the genus Rhodobacter in the biomats, colorless sulfur oxidizers Acidithiobacillus sp. in the warm mud and water samples, and Lyzobacter sp.-related populations in the hot mud sample (87 °C). Molecular data also allowed the detection of sulfate and sulfur reducers related to Thermodesulfobium and Desulfurella genera. Several strains affiliated to both genera were enriched or isolated from the mesophilic mud sample. A feature common to all samples was the dominance of bacteria involved in sulfur and iron biogeochemical cycles (Rhodobacter, Acidithiobacillus, Thiomonas, Desulfurella and Thermodesulfobium genera).


Assuntos
Fontes Termais/microbiologia , Microbiota , Sulfatos/metabolismo , Enxofre/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , México , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
14.
FEMS Microbiol Ecol ; 83(1): 26-37, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22809466

RESUMO

Improving the knowledge on sulfate-reducing bacteria (SRB) diversity and ecophysiology will permit a better understanding on their key roles in aquatic ecosystems. Therefore, their diversity was evaluated in estuarine sediments by a polyphasic approach including dsrA gene cloning and sequencing (156 clones) and high-throughput isolations in 384-well microplates (177 strains). Using the related thresholds of 95% (DsrA amino acid sequences) and 97% (16S rRNA gene sequences) for sequence similarity, SRB were grouped into 60 and 22 operational taxonomic units, respectively. Both approaches poorly overlapped and rather complemented each other. The clone library was dominated by sequences related to the Desulfobacteraceae, while only one isolate belonged to this family. Most of the strains were affiliated to the genera Desulfopila and Desulfotalea within the Desulfobulbaceae. Desulfopila-related strains exhibited a high phylogenetic microdiversity and represented numerically significant populations. In contrast, Desulfovibrio isolates were less abundant but displayed a high phylogenetic diversity. Three hundred and eighty-four-well microplate isolations enhanced significantly the number of isolates handled. As a consequence, 15 new taxa sharing less than 98% sequence similarity (16S rRNA gene) with their closest relatives were obtained. This polyphasic approach allowed to obtain a high phylogenetic diversity and thus a better view of sulfate-reducing communities in intertidal sediments.


Assuntos
Biodiversidade , Sedimentos Geológicos/microbiologia , Filogenia , Bactérias Redutoras de Enxofre/classificação , Clonagem Molecular , DNA Bacteriano/isolamento & purificação , Estuários , Biblioteca Gênica , Genes Bacterianos , Ensaios de Triagem em Larga Escala , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA