Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Ecol Lett ; 26(12): 2077-2086, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787116

RESUMO

Resource quantity controls biodiversity across spatial scales; however, the importance of resource quality to cross-scale patterns in species richness has seldom been explored. We evaluated the relationship between stream basal resource quantity (periphyton chlorophyll a) and invertebrate richness and compared this to the relationship of resource quality (periphyton stoichiometry) and richness at local and regional scales across 27 North American streams. At the local scale, invertebrate richness peaked at intermediate levels of chlorophyll a, but had a shallow negative relationship with periphyton C:P and N:P. However, at the regional scale, richness had a strong negative relationship with chlorophyll a and periphyton C:P and N:P. The divergent relationships of periphyton chlorophyll a and stoichiometry with invertebrate richness suggest that autochthonous resource quantity limits diversity more than quality, consistent with patterns of eutrophication. Collectively, we provide evidence that patterns in resource quantity and quality play important, yet differing roles in shaping freshwater biodiversity across spatial scale.


Assuntos
Ecossistema , Rios , Animais , Clorofila A , Invertebrados , Biodiversidade
2.
Ecol Appl ; 32(1): e02485, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34676934

RESUMO

Ecological inference requires integrating information across scales. This integration creates a complex spatial dependence structure that is most accurately represented by fully non-stationary models. However, ecologists rarely use these models because they are difficult to estimate and interpret. Here, we facilitate the use of fully non-stationary models in ecology by improving the interpretability of a recently developed non-stationary model and applying it to improve our understanding of the spatial processes driving lake eutrophication. We reformulated a model that incorporates non-stationary correlation by adding environmental predictors to the covariance function, thereby building on the intuition of mean regression. We created ellipses to visualize how data at a given site correlate with their surroundings (i.e., the range and directionality of underlying spatial processes). We applied this model to describe the spatial dependence structure of variables related to lake eutrophication across two different regions: a Midwestern United States region with highly agricultural landscapes, and a Northeastern United States region with heterogeneous land use. For the Midwest, increases in forest cover increased the homogeneity of the residual spatial structure of total phosphorus, indicating that macroscale processes dominated this nutrient's spatial structure. Conversely, high forest cover and baseflow reduced the spatial homogeneity of chlorophyll a residuals, indicating that microscale processes dominated for chlorophyll a in the Midwest. In the Northeast, increases in urban land use and baseflow decreased the homogeneity of phosphorus concentrations indicating the dominance of microscale processes, but none of our covariates were strongly associated with the residual spatial structure of chlorophyll a. Our model showed that the spatial dependence structure of environmental response variables shifts across space. It also helped to explain this structure using ecologically relevant covariates from different scales whose effects can be interpreted intuitively. This provided novel insight into the processes that lead to eutrophication, a complex and pervasive environmental issue.


Assuntos
Monitoramento Ambiental , Eutrofização , Clorofila A , Lagos/química , Fósforo/análise
3.
Am Nat ; 195(6): 964-985, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32469660

RESUMO

Understanding how nutrients flow through food webs is central in ecosystem ecology. Tracer addition experiments are powerful tools to reconstruct nutrient flows by adding an isotopically enriched element into an ecosystem and tracking its fate through time. Historically, the design and analysis of tracer studies have varied widely, ranging from descriptive studies to modeling approaches of varying complexity. Increasingly, isotope tracer data are being used to compare ecosystems and analyze experimental manipulations. Currently, a formal statistical framework for analyzing such experiments is lacking, making it impossible to calculate the estimation errors associated with the model fit, the interdependence of compartments, and the uncertainty in the diet of consumers. In this article we develop a method based on Bayesian hidden Markov models and apply it to the analysis of N15-NH4+ tracer additions in two Trinidadian streams in which light was experimentally manipulated. Through this case study, we illustrate how to estimate N fluxes between ecosystem compartments, turnover rates of N within those compartments, and the associated uncertainty. We also show how the method can be used to compare alternative models of food web structure, calculate the error around derived parameters, and make statistical comparisons between sites or treatments.


Assuntos
Ecossistema , Cadeia Alimentar , Modelos Estatísticos , Nitrogênio/metabolismo , Compostos de Amônio/química , Animais , Luz , Cadeias de Markov , Isótopos de Nitrogênio , Plantas/metabolismo , Rios , Trinidad e Tobago , Água/química
4.
Ecol Lett ; 22(10): 1587-1598, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31347258

RESUMO

Although spatial and temporal variation in ecological properties has been well-studied, crucial knowledge gaps remain for studies conducted at macroscales and for ecosystem properties related to material and energy. We test four propositions of spatial and temporal variation in ecosystem properties within a macroscale (1000 km's) extent. We fit Bayesian hierarchical models to thousands of observations from over two decades to quantify four components of variation - spatial (local and regional) and temporal (local and coherent); and to model their drivers. We found strong support for three propositions: (1) spatial variation at local and regional scales are large and roughly equal, (2) annual temporal variation is mostly local rather than coherent, and, (3) spatial variation exceeds temporal variation. Our findings imply that predicting ecosystem responses to environmental changes at macroscales requires consideration of the dominant spatial signals at both local and regional scales that may overwhelm temporal signals.


Assuntos
Ecossistema , Modelos Biológicos , Análise Espaço-Temporal , Teorema de Bayes
5.
Ecol Appl ; 29(2): e01836, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30644621

RESUMO

Climate change is a well-recognized threat to lake ecosystems and, although there likely exists geographic variation in the sensitivity of lakes to climate, broad-scale, long-term studies are needed to understand this variation. Further, the potential mediating role of local to regional ecological context on these responses is not well documented. In this study, we examined relationships between climate and water clarity in 365 lakes from 1981 to 2010 in two distinct regions in the northeastern and midwestern United States. We asked (1) How do climate-water-clarity relationships vary across watersheds and between two geographic regions? and (2) Do certain characteristics make some lakes more climate sensitive than others? We found strong differences in climate-water-clarity relationships both within and across the two regions. For example, in the northeastern region, water clarity was often negatively correlated with summer precipitation (median correlation = -0.32, n = 160 lakes), but was not correlated with summer average maximum temperature (median correlation = 0.09, n = 205 lakes). In the midwestern region, water clarity was not related to summer precipitation (median correlation = -0.04), but was often negatively correlated with summer average maximum temperature (median correlation = -0.18). There were few strong relationships between local and sub-regional ecological context and a lake's sensitivity to climate. For example, ecological context variables explained just 16-18% of variation in summer precipitation sensitivity, which was most related to total phosphorus, chlorophyll a, lake depth, and hydrology in both regions. Sensitivity to summer maximum temperature was even less predictable in both regions, with 4% or less of variation explained using all ecological context variables. Overall, we identified differences in the climate sensitivity of lakes across regions and found that local and sub-regional ecological context weakly influences the sensitivity of lakes to climate. Our findings suggest that local to regional drivers may combine to influence the sensitivity of lake ecosystems to climate change, and that sensitivities among lakes are highly variable within and across regions. This variability suggests that lakes are sensitive to different aspects of climate change (temperature vs. precipitation) and that responses of lakes to climate are heterogeneous and complex.


Assuntos
Lagos , Qualidade da Água , Clorofila A , Ecossistema , Meio-Oeste dos Estados Unidos
6.
Gigascience ; 6(12): 1-22, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053868

RESUMO

Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states.LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600-12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales.


Assuntos
Bases de Dados Factuais , Lagos/química , Qualidade da Água , Estados Unidos
7.
Ecology ; 98(12): 3044-3055, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28881008

RESUMO

Studies of trophic-level material and energy transfers are central to ecology. The use of isotopic tracers has now made it possible to measure trophic transfer efficiencies of important nutrients and to better understand how these materials move through food webs. We analyzed data from thirteen 15 N-ammonium tracer addition experiments to quantify N transfer from basal resources to animals in headwater streams with varying physical, chemical, and biological features. N transfer efficiencies from primary uptake compartments (PUCs; heterotrophic microorganisms and primary producers) to primary consumers was lower (mean 11.5%, range <1% to 43%) than N transfer efficiencies from primary consumers to predators (mean 80%, range 5% to >100%). Total N transferred (as a rate) was greater in streams with open compared to closed canopies and overall N transfer efficiency generally followed a similar pattern, although was not statistically significant. We used principal component analysis to condense a suite of site characteristics into two environmental components. Total N uptake rates among trophic levels were best predicted by the component that was correlated with latitude, DIN:SRP, GPP:ER, and percent canopy cover. N transfer efficiency did not respond consistently to environmental variables. Our results suggest that canopy cover influences N movement through stream food webs because light availability and primary production facilitate N transfer to higher trophic levels.


Assuntos
Cadeia Alimentar , Ciclo do Nitrogênio , Nitrogênio/análise , Rios/química , Animais , Nitrogênio/metabolismo , Isótopos de Nitrogênio
8.
Glob Chang Biol ; 23(12): 5455-5467, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28834575

RESUMO

The United States (U.S.) has faced major environmental changes in recent decades, including agricultural intensification and urban expansion, as well as changes in atmospheric deposition and climate-all of which may influence eutrophication of freshwaters. However, it is unclear whether or how water quality in lakes across diverse ecological settings has responded to environmental change. We quantified water quality trends in 2913 lakes using nutrient and chlorophyll (Chl) observations from the Lake Multi-Scaled Geospatial and Temporal Database of the Northeast U.S. (LAGOS-NE), a collection of preexisting lake data mostly from state agencies. LAGOS-NE was used to quantify whether lake water quality has changed from 1990 to 2013, and whether lake-specific or regional geophysical factors were related to the observed changes. We modeled change through time using hierarchical linear models for total nitrogen (TN), total phosphorus (TP), stoichiometry (TN:TP), and Chl. Both the slopes (percent change per year) and intercepts (value in 1990) were allowed to vary by lake and region. Across all lakes, TN declined at a rate of 1.1% year-1 , while TP, TN:TP, and Chl did not change. A minority (7%-16%) of individual lakes had changing nutrients, stoichiometry, or Chl. Of those lakes that changed, we found differences in the geospatial variables that were most related to the observed change in the response variables. For example, TN and TN:TP trends were related to region-level drivers associated with atmospheric deposition of N; TP trends were related to both lake and region-level drivers associated with climate and land use; and Chl trends were found in regions with high air temperature at the beginning of the study period. We conclude that despite large environmental change and management efforts over recent decades, water quality of lakes in the Midwest and Northeast U.S. has not overwhelmingly degraded or improved.


Assuntos
Clorofila/fisiologia , Mudança Climática , Monitoramento Ambiental , Lagos/química , Eutrofização , Alimentos , Nitrogênio/química , Fósforo/química , Qualidade da Água
9.
Ecol Evol ; 7(9): 3046-3058, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28480004

RESUMO

Understanding broad-scale ecological patterns and processes often involves accounting for regional-scale heterogeneity. A common way to do so is to include ecological regions in sampling schemes and empirical models. However, most existing ecological regions were developed for specific purposes, using a limited set of geospatial features and irreproducible methods. Our study purpose was to: (1) describe a method that takes advantage of recent computational advances and increased availability of regional and global data sets to create customizable and reproducible ecological regions, (2) make this algorithm available for use and modification by others studying different ecosystems, variables of interest, study extents, and macroscale ecology research questions, and (3) demonstrate the power of this approach for the research question-How well do these regions capture regional-scale variation in lake water quality? To achieve our purpose we: (1) used a spatially constrained spectral clustering algorithm that balances geospatial homogeneity and region contiguity to create ecological regions using multiple terrestrial, climatic, and freshwater geospatial data for 17 northeastern U.S. states (~1,800,000 km2); (2) identified which of the 52 geospatial features were most influential in creating the resulting 100 regions; and (3) tested the ability of these ecological regions to capture regional variation in water nutrients and clarity for ~6,000 lakes. We found that: (1) a combination of terrestrial, climatic, and freshwater geospatial features influenced region creation, suggesting that the oft-ignored freshwater landscape provides novel information on landscape variability not captured by traditionally used climate and terrestrial metrics; and (2) the delineated regions captured macroscale heterogeneity in ecosystem properties not included in region delineation-approximately 40% of the variation in total phosphorus and water clarity among lakes was at the regional scale. Our results demonstrate the usefulness of this method for creating customizable and reproducible regions for research and management applications.

10.
Ecol Appl ; 27(5): 1529-1540, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28370707

RESUMO

Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry. Our results suggest ecological context mediates controls on lake nutrients and stoichiometry. Predicting stoichiometry was generally more difficult than predicting nutrient concentrations, but human activity may decouple N and P, leading to better prediction of N:P stoichiometry in regions with high anthropogenic activity.


Assuntos
Lagos/química , Nitrogênio/análise , Fósforo/análise , Agricultura , Agricultura Florestal , Nutrientes/análise , Tecnologia de Sensoriamento Remoto , Estados Unidos , Qualidade da Água
11.
Ecology ; 97(11): 3154-3166, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27870030

RESUMO

Decades of ecological study have demonstrated the importance of top-down and bottom-up controls on food webs, yet few studies within this context have quantified the magnitude of energy and material fluxes at the whole-ecosystem scale. We examined top-down and bottom-up effects on food web fluxes using a field experiment that manipulated the presence of a consumer, the Trinidadian guppy Poecilia reticulata, and the production of basal resources by thinning the riparian forest canopy to increase incident light. To gauge the effects of these reach-scale manipulations on food web fluxes, we used a nitrogen (15 N) stable isotope tracer to compare basal resource treatments (thinned canopy vs. control) and consumer treatments (guppy introduction vs. control). The thinned canopy stream had higher primary production than the natural canopy control, leading to increased N fluxes to invertebrates that feed on benthic biofilms (grazers), fine benthic organic matter (collector-gatherers), and organic particles suspended in the water column (filter feeders). Stream reaches with guppies also had higher primary productivity and higher N fluxes to grazers and filter feeders. In contrast, N fluxes to collector-gatherers were reduced in guppy introduction reaches relative to upstream controls. N fluxes to leaf-shredding invertebrates, predatory invertebrates, and the other fish species present (Hart's killifish, Anablepsoides hartii) did not differ across light or guppy treatments, suggesting that effects on detritus-based linkages and upper trophic levels were not as strong. Effect sizes of guppy and canopy treatments on N flux rates were similar for most taxa, though guppy effects were the strongest for filter feeding invertebrates while canopy effects were the strongest for collector-gatherer invertebrates. Combined, these results extend previous knowledge about top-down and bottom-up controls on ecosystems by providing experimental, reach-scale evidence that both pathways can act simultaneously and have equally strong influence on nutrient fluxes from inorganic pools through primary consumers.


Assuntos
Peixes/fisiologia , Cadeia Alimentar , Luz , Rios , Animais , Biomassa , Dinâmica Populacional , Trinidad e Tobago , Clima Tropical , Água/química
12.
Gigascience ; 4: 28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26140212

RESUMO

Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale, national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully understand variation among these ecosystems. However, such datasets originate from different sources and have different spatial and temporal resolutions. By taking an open-science perspective and by combining site-based ecosystem datasets and national geospatial datasets, science gains the ability to ask important research questions related to grand environmental challenges that operate at broad scales. Documentation of such complicated database integration efforts, through peer-reviewed papers, is recommended to foster reproducibility and future use of the integrated database. Here, we describe the major steps, challenges, and considerations in building an integrated database of lake ecosystems, called LAGOS (LAke multi-scaled GeOSpatial and temporal database), that was developed at the sub-continental study extent of 17 US states (1,800,000 km(2)). LAGOS includes two modules: LAGOSGEO, with geospatial data on every lake with surface area larger than 4 ha in the study extent (~50,000 lakes), including climate, atmospheric deposition, land use/cover, hydrology, geology, and topography measured across a range of spatial and temporal extents; and LAGOSLIMNO, with lake water quality data compiled from ~100 individual datasets for a subset of lakes in the study extent (~10,000 lakes). Procedures for the integration of datasets included: creating a flexible database design; authoring and integrating metadata; documenting data provenance; quantifying spatial measures of geographic data; quality-controlling integrated and derived data; and extensively documenting the database. Our procedures make a large, complex, and integrated database reproducible and extensible, allowing users to ask new research questions with the existing database or through the addition of new data. The largest challenge of this task was the heterogeneity of the data, formats, and metadata. Many steps of data integration need manual input from experts in diverse fields, requiring close collaboration.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Ecologia , Sistemas de Informação Geográfica
13.
Mol Ecol Resour ; 11(6): 1124-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21951598

RESUMO

This article documents the addition of 112 microsatellite marker loci and 24 pairs of single nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Agelaius phoeniceus, Austrolittorina cincta, Circus cyaneus, Circus macrourus, Circus pygargus, Cryptocoryne × purpurea Ridl. nothovar. purpurea, Mya arenaria, Patagioenas squamosa, Prochilodus mariae, Scylla serrata and Scytalopus speluncae. These loci were cross-tested on the following species: Cryptocoryne × purpurea nothovar. purpurea, Cryptocoryne affinis, Cryptocoryne ciliata, Cryptocoryne cordata var. cordata, Cryptocoryne elliptica, Cryptocoryne griffithii, Cryptocoryne minima, Cryptocoryne nurii and Cryptocoryne schulzei. This article also documents the addition of 24 sequencing primer pairs and 24 allele-specific primers or probes for Aphis glycines.


Assuntos
Bases de Dados Genéticas , Ecologia/métodos , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Primers do DNA/genética , Especificidade da Espécie
14.
J Leukoc Biol ; 77(4): 503-12, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15629885

RESUMO

A reduction in macrophage (MPhi) function with aging makes mice less responsive to bacterial capsular polysaccharides, such as those present in the pneumococcal polysaccharide vaccine, a model of thymus independent (TI) antigen (Ag). Using trinitrophenol (TNP)-lipopolysaccharide (LPS) and TNP-Ficoll, two other well-studied TI Ag, we studied the mechanistic basis of reduced MPhi function in the aged. We show that aged mice are profoundly hyporesponsive to these TI Ag. As a result of a requirement for MPhi, highly purified B cells from young-adult mice do not respond to TI Ag. When purified, young B cells were immunized with TNP-Ficoll, the antibody production from those cultures reconstituted with MPhi from aged mice was significantly lower than that seen with young MPhi. Consequently, this unresponsiveness can be overcome by a mixture of interleukin (IL)-1beta and IL-6. Upon stimulation with LPS, in comparison with young MPhi, aged MPhi secreted reduced amounts of IL-6, tumor necrosis factor alpha, IL-1beta, and IL-12, cytokines necessary for B cells to respond to TI Ag. LPS also induced aged MPhi to produce an excess of IL-10. Neutralization of IL-10 enhanced the production of proinflamatory cytokines by MPhi upon LPS stimulation and also induced Ab production by aged splenocytes. Thus, the inability of aged MPhi to help the B cell response appears to be caused by an excess of IL-10. As aged MPhi have a reduced number of cells expressing Toll-like receptor 4 and CD14, the imbalance in cytokine production might be partly a result of fewer cells expressing key components of the LPS receptor complex.


Assuntos
Envelhecimento/imunologia , Linfócitos B/imunologia , Lipopolissacarídeos/farmacologia , Linfócitos/imunologia , Macrófagos/imunologia , Animais , Linfócitos B/efeitos dos fármacos , Ficoll , Inflamação/imunologia , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/imunologia , Linfócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Picratos , Baço/efeitos dos fármacos , Baço/crescimento & desenvolvimento , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA