RESUMO
Senescence is a universal barrier to immortalisation and tumorigenesis. As such, interest in the use of senescence-induction in a therapeutic context has been gaining momentum in the past few years; however, senescence and immortalisation remain underserved areas for drug discovery owing to a lack of robust senescence inducing agents and an incomplete understanding of the signalling events underlying this complex process. In order to address this issue we undertook a large-scale morphological siRNA screen for inducers of senescence phenotypes in the human melanoma cell line A375P. Following rescreen and validation in a second cancer cell line, HCT116 colorectal carcinoma, a panel of 16 of the most robust hits were selected for further validation based on significance and the potential to be targeted by drug-like molecules. Using secondary assays for detection of senescence biomarkers p21, 53BP1 and senescence associated beta-galactosidase (SAßGal) in a panel of HCT116 cell lines carrying cancer-relevant mutations, we show that partial senescence phenotypes can be induced to varying degrees in a context dependent manner, even in the absence of p21 or p53 expression. However, proliferation arrest varied among genetic backgrounds with predominantly toxic effects in p21 null cells, while cells lacking PI3K mutation failed to arrest. Furthermore, we show that the oncogene ECT2 induces partial senescence phenotypes in all mutant backgrounds tested, demonstrating a dependence on activating KRASG13D for growth suppression and a complete senescence response. These results suggest a potential mechanism to target mutant KRAS signalling through ECT2 in cancers that are reliant on activating KRAS mutations and remain refractory to current treatments.
Assuntos
Senescência Celular/genética , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Marcadores Genéticos , Células HCT116 , Humanos , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismoRESUMO
Cell senescence is a permanent growth arrest following extended proliferation. Cultured cancer cells including metastatic melanoma cells often appear immortal (proliferate indefinitely), while uncultured benign nevi (moles) show senescence markers. Here, with new explantation methods, we investigated which classes of primary pigmented lesions are typically immortal. Nevi yielded a few proliferating cells, consistent with most nevus cells being senescent. No nevus culture (0/28) appeared immortal. Some thin and thick melanoma cultures proved immortal under these conditions, but surprisingly few (4/37). All arrested cultures displayed three senescence markers in some cells: ß-galactosidase, nuclear p16, and heterochromatic foci/aggregates. However, melanoma cultures also showed features of telomeric crisis (arrest because of ultrashort telomeres). Moreover, crisis markers including anaphase bridges were frequent in uncultured vertical growth-phase (VGP) melanomas. Conversely, all immortal melanoma cultures expressed telomerase reverse transcriptase and telomerase, showing aneuploidy. The findings suggest that primary melanomas are typically precrisis, with immortalization/telomere maintenance as a late event.