Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L662-L674, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37786934

RESUMO

Early life over-nutrition, as experienced in maternal obesity, is a risk factor for developing cardiorespiratory and metabolic diseases. Here we investigated the effects of high-fat diet (HFD) consumption on the breathing pattern and sympathetic discharge to blood vessels in juvenile offspring from dams fed with HFD (O-HFD). Adult female Holtzman rats were given a standard diet (SD) or HFD from 6 wk before gestation to weaning. At weaning (P21), the male offspring from SD dams (O-SD) and O-HFD received SD until the experimental day (P28-P45). Nerve recordings performed in decerebrated in situ preparations demonstrated that O-HFD animals presented abdominal expiratory hyperactivity under resting conditions and higher vasoconstrictor sympathetic activity levels. The latter was associated with blunted respiratory-related oscillations in sympathetic activity, especially in control animals. When exposed to elevated hypercapnia or hypoxia levels, the O-HFD animals mounted similar ventilatory and respiratory motor responses as the control animals. Hypercapnia and hypoxia exposure also increased sympathetic activity in both groups but did not reinstate the respiratory-sympathetic coupling in the O-HFD rats. In freely behaving conditions, O-HFD animals exhibited higher resting pulmonary ventilation and larger variability of arterial pressure levels than the O-SD animals due to augmented sympathetic modulation of blood vessel diameter. Maternal obesity modified the functioning of cardiorespiratory systems in offspring at a young age, inducing active expiration and sympathetic overactivity under resting conditions. These observations represent new evidence about pregnancy-related complications that lead to the development of respiratory distress and hypertension in children of obese mothers.NEW & NOTEWORTHY Maternal obesity is a risk factor for developing cardiorespiratory and metabolic diseases. This study highlights the changes on the breathing pattern and sympathetic discharge to blood vessels in juvenile offspring from dams fed with HFD. Maternal obesity modified the functioning of cardiorespiratory systems in offspring, inducing active expiration and sympathetic overactivity. These observations represent new evidence about pregnancy-related complications that lead to the development of respiratory distress and hypertension in children of obese mothers.


Assuntos
Hipertensão , Doenças Metabólicas , Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Síndrome do Desconforto Respiratório , Humanos , Criança , Ratos , Animais , Masculino , Feminino , Gravidez , Dieta Hiperlipídica/efeitos adversos , Obesidade Materna/complicações , Hipercapnia , Respiração , Obesidade , Ratos Sprague-Dawley , Hipóxia/complicações , Doenças Metabólicas/complicações , Síndrome do Desconforto Respiratório/complicações , Efeitos Tardios da Exposição Pré-Natal/metabolismo
2.
J Hypertens ; 41(10): 1634-1644, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37466439

RESUMO

BACKGROUND: A growing body of evidence suggests that oxidative stress plays a role in the pathophysiology of hypertension. However, the involvement of the reactive oxygen species (ROS) in the commissural nucleus of the solitary tract (commNTS) in development the of hypertension remains unclear. METHOD: We evaluated the hemodynamic and sympathetic responses to acute inhibition of NADPH oxidase in the commNTS in renovascular hypertensive rats. Under anesthesia, male Holtzman rats were implanted with a silver clip around the left renal artery to induce 2-kidney 1-clip (2K1C) hypertension. After six weeks, these rats were anesthetized and instrumented for recording mean arterial pressure (MAP), renal blood flow (RBF), renal vascular resistance (RVR), and renal sympathetic nerve activity (RSNA) during baseline and after injection of apocynin (nicotinamide adenine dinucleotide phosphate oxidase inhibitor), NSC 23766 (RAC inhibitor) or saline into the commNTS. RESULTS: Apocynin into the commNTS decreased MAP, RSNA, and RVR in 2K1C rats. NSC 23766 into the commNTS decreased MAP and RSNA, without changing RVR in 2K1C rats. CONCLUSION: These results demonstrate that the formation of ROS in the commNTS is important to maintain sympathoexcitation and hypertension in 2K1C rats and suggest that NADPH oxidase in the commNTS could be a potential target for therapeutics in renovascular hypertension.


Assuntos
Hipertensão Renovascular , Hipertensão , Ratos , Masculino , Animais , Pressão Arterial , Núcleo Solitário/metabolismo , NADP , Espécies Reativas de Oxigênio , Pressão Sanguínea/fisiologia , Rim , Sistema Nervoso Simpático , Ratos Sprague-Dawley , NADPH Oxidases/metabolismo
3.
Auton Neurosci ; 248: 103107, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454409

RESUMO

Previous studies from our laboratory have shown that the pressor response to intracerebroventricular (icv) administered ANG II in normotensive rats or spontaneously hypertensive rats (SHRs) is attenuated by increased central H2O2 concentration, produced either by direct H2O2 icv injection or by increased endogenous H2O2 centrally in response to local catalase inhibition with 3-amino-1,2,4-triazole (ATZ). In the present study, we evaluated the effects of ATZ administered peripherally on arterial pressure and sympathetic and angiotensinergic activity in SHRs. Male SHRs weighing 280-330 g were used. Mean arterial pressure (MAP) and heart rate (HR) were recorded in conscious freely moving SHRs. Acute intravenous injection of ATZ (300 mg/kg of body weight) did not modify MAP and HR during the next 4 h, however, the treatment with ATZ (300 mg/kg of body weight twice per day) for 3 days reduced MAP (144 ± 6, vs. saline, 183 ± 13 mmHg), without changing HR. Intravenous hexamethonium (ganglionic blocker) produced a smaller decrease in MAP 4 h after ATZ (-25 ± 3, vs saline -38 ± 4 mmHg). Losartan (angiotensinergic AT1 receptor blocker) produced a significant depressor response 4 h after ATZ (-22 ± 4, vs. saline: -2 ± 4 mmHg) and in 3-day ATZ treated SHRs (-25 ± 5, vs. saline: -9 ± 4 mmHg). The results suggest that the treatment with ATZ reduces sympathetic activity in SHRs and simultaneously increases angiotensinergic activity.


Assuntos
Hipertensão , Triazóis , Ratos , Masculino , Animais , Ratos Endogâmicos SHR , Amitrol (Herbicida)/farmacologia , Triazóis/farmacologia , Peróxido de Hidrogênio/farmacologia , Pressão Sanguínea , Frequência Cardíaca , Peso Corporal , Hipertensão/tratamento farmacológico
4.
Front Psychiatry ; 14: 1173635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143780

RESUMO

Post-partum depression (PPD) with varying clinical manifestations affecting new parents remains underdiagnosed and poorly treated. This minireview revisits the pharmacotherapy, and relevant etiological basis, capable of advancing preclinical research frameworks. Maternal tasks accompanied by numerous behavioral readouts demand modeling different paradigms that reflect the complex and heterogenous nature of PPD. Hence, effective PPD-like characterization in animals towards the discovery of pharmacological intervention demands research that deepens our understanding of the roles of hormonal and non-hormonal components and mediators of this psychiatric disorder.

5.
Sleep ; 46(5)2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36864609

RESUMO

STUDY OBJECTIVES: Exposure to postnatal chronic intermittent hypoxia (pCIH), as experienced in sleep-disordered breathing, is a risk factor for developing cardiorespiratory diseases in adulthood. pCIH causes respiratory instability and motor dysfunction that persist until adult life. In this study, we investigated the impact of pCIH on the sympathetic control of arterial pressure in rats. METHODS AND RESULTS: Neonate male Holtzman rats (P0-1) were exposed to pCIH (6% O2 for 30 seconds, every 10 minutes, 8 h/day) during their first 10-15 days of life, while control animals were maintained under normoxia. In early adult life (P25-40), freely behaving pCIH animals (n = 13) showed higher baseline arterial pressure levels linked to augmented sympathetic-mediated variability than control animals (n = 12, p < 0.05). Using decerebrated in situ preparations, we found that juvenile pCIH rats exhibited a twofold increase in thoracic sympathetic nerve activity (n = 14) and elevated firing frequency of ventromedullary presympathetic neurons (n = 7) compared to control rats (n = 6-7, p < 0.05). This pCIH-induced sympathetic dysregulation was associated with increased HIF-1α (hypoxia-inducible factor 1 alpha) mRNA expression in catecholaminergic presympathetic neurons (n = 5, p < 0.05). At older age (P90-99), pCIH rats displayed higher arterial pressure levels and larger depressor responses to ganglionic blockade (n = 6-8, p < 0.05), confirming the sympathetic overactivity state. CONCLUSIONS: pCIH facilitates the vasoconstrictor sympathetic drive by mechanisms associated with enhanced firing activity and HIF-1α expression in ventromedullary presympathetic neurons. This excessive sympathetic activity persists until adulthood resulting in high blood pressure levels and variability, which contribute to developing cardiovascular diseases.


Assuntos
Hipertensão , Ratos , Masculino , Animais , Ratos Wistar , Pressão Arterial/fisiologia , Hipóxia , Sistema Nervoso Simpático , Ratos Sprague-Dawley
6.
Life Sci ; 319: 121538, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868399

RESUMO

AIMS: Reactive oxygen species like hydrogen peroxide (H2O2) are produced endogenously and may participate in intra- and extracellular signaling, including modulation of angiotensin II responses. In the present study, we investigated the effects of chronic subcutaneous (sc) administration of the catalase inhibitor 3-amino-1,2,4-triazole (ATZ) on arterial pressure, autonomic modulation of arterial pressure, hypothalamic expression of AT1 receptors and neuroinflammatory markers and fluid balance in 2-kidney, 1clip (2K1C) renovascular hypertensive rats. MATERIALS AND METHODS: Male Holtzman rats with a clip occluding partially the left renal artery and chronic sc injections of ATZ were used. KEY FINDINGS: Subcutaneous injections of ATZ (600 mg/kg of body weight/day) for 9 days in 2K1C rats reduced arterial pressure (137 ± 8, vs. saline: 182 ± 8 mmHg). ATZ also reduced the sympathetic modulation and enhanced the parasympathetic modulation of pulse interval, reducing the sympatho-vagal balance. Additionally, ATZ reduced mRNA expression for interleukins 6 and IL-1ß, tumor necrosis factor-α, AT1 receptor (0.77 ± 0.06, vs. saline: 1.47 ± 0.26 fold change), NOX 2 (0.85 ± 0.13, vs. saline: 1.75 ± 0.15 fold change) and the marker of microglial activation, CD 11 (0.47 ± 0.07, vs. saline, 1.34 ± 0.15 fold change) in the hypothalamus of 2K1C rats. Daily water and food intake and renal excretion were only slightly modified by ATZ. SIGNIFICANCE: The results suggest that the increase of endogenous H2O2 availability with chronic treatment with ATZ had an anti-hypertensive effect in 2K1C hypertensive rats. This effect depends on decreased activity of sympathetic pressor mechanisms and mRNA expression of AT1 receptors and neuroinflammatory markers possibly due to reduced angiotensin II action.


Assuntos
Hipertensão Renovascular , Hipertensão , Nefropatias , Ratos , Masculino , Animais , Hipertensão Renovascular/tratamento farmacológico , Angiotensina II/farmacologia , Catalase , Peróxido de Hidrogênio/farmacologia , Hipertensão/tratamento farmacológico , Ratos Sprague-Dawley , RNA Mensageiro , Pressão Sanguínea
7.
Front Immunol ; 13: 1033774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389846

RESUMO

The idea that the nervous system communicates with the immune system to regulate physiological and pathological processes is not new. However, there is still much to learn about how these interactions occur under different conditions. The carotid body (CB) is a sensory organ located in the neck, classically known as the primary sensor of the oxygen (O2) levels in the organism of mammals. When the partial pressure of O2 in the arterial blood falls, the CB alerts the brain which coordinates cardiorespiratory responses to ensure adequate O2 supply to all tissues and organs in the body. A growing body of evidence, however, has demonstrated that the CB is much more than an O2 sensor. Actually, the CB is a multimodal sensor with the extraordinary ability to detect a wide diversity of circulating molecules in the arterial blood, including inflammatory mediators. In this review, we introduce the literature supporting the role of the CB as a critical component of neuroimmune interactions. Based on ours and other studies, we propose a novel neuroimmune pathway in which the CB acts as a sensor of circulating inflammatory mediators and, in conditions of systemic inflammation, recruits a sympathetic-mediated counteracting mechanism that appears to be a protective response.


Assuntos
Corpo Carotídeo , Animais , Neuroimunomodulação , Oxigênio/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Mamíferos/metabolismo
8.
Neurosci Lett ; 787: 136817, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35905886

RESUMO

Interruption of the activity of neurons in the commissural portion of the nucleus of the solitary tract (cNTS) decreases blood pressure (BP) in experimental models of hypertension, such as the spontaneously hypertensive (SH) rat. To examine whether PHOX2B expressing cNTS neurons are involved in maintaining the elevated BP, we used replication-deficient viruses with a modified Phox2 binding site promoter to express the inhibitory chemogenetic allatostatin receptor or green fluorescent protein in the cNTS. Following administration of allatostatin, we observed a depressor and bradycardic response in anesthetized SH rats that expressed the allatostatin receptor. Injection of allatostatin did not affect BP or heart rate (HR) in control SH rats expressing green fluorescent protein in the cNTS. Immunohistochemistry showed that the majority of transduced cNTS neurons were PHOX2B-immunoreactive and some also expressed tyrosine hydroxylase. We conclude that in anesthetized SH rat, the Phox2B expressing cNTS neurons maintain elevated BP.


Assuntos
Neurônios , Núcleo Solitário , Animais , Pressão Sanguínea , Proteínas de Fluorescência Verde/metabolismo , Frequência Cardíaca , Neurônios/metabolismo , Ratos , Ratos Endogâmicos SHR , Núcleo Solitário/metabolismo , Fatores de Transcrição/metabolismo
9.
Brain Behav Immun ; 102: 370-386, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339628

RESUMO

Recent evidence has suggested that the carotid bodies might act as immunological sensors, detecting pro-inflammatory mediators and signalling to the central nervous system, which, in turn, orchestrates autonomic responses. Here, we confirmed that the TNF-α receptor type I is expressed in the carotid bodies of rats. The systemic administration of TNF-α increased carotid body afferent discharge and activated glutamatergic neurons in the nucleus tractus solitarius (NTS) that project to the rostral ventrolateral medulla (RVLM), where many pre-sympathetic neurons reside. The activation of these neurons was accompanied by an increase in splanchnic sympathetic nerve activity. Carotid body ablation blunted the TNF-α-induced activation of RVLM-projecting NTS neurons and the increase in splanchnic sympathetic nerve activity. Finally, plasma and spleen levels of cytokines after TNF-α administration were higher in rats subjected to either carotid body ablation or splanchnic sympathetic denervation. Collectively, our findings indicate that the carotid body detects circulating TNF-α to activate a counteracting sympathetic anti-inflammatory mechanism.


Assuntos
Corpo Carotídeo , Animais , Anti-Inflamatórios , Bulbo/fisiologia , Ratos , Ratos Sprague-Dawley , Reflexo , Núcleo Solitário/fisiologia , Sistema Nervoso Simpático/fisiologia , Fator de Necrose Tumoral alfa
11.
Pulm Pharmacol Ther ; 70: 102075, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34428598

RESUMO

Chronic Obstructive Pulmonary Disease - COPD is characterized by the destruction of alveolar walls associated to a chronic inflammatory response of the airways. There is no clinical therapy for COPD. In this context, cell-based therapies represent a promising therapeutic approach for chronic lung disease. The goal of this work was to evaluate the effect of simvastatin on cell-based therapy in a mice emphysema model. Female FVB mice received intranasal instillation of elastase (three consecutive doses of 50 µL) in order to promote pulmonary emphysema. After 21 days of the first instillation, the animals were treated with Adipose-Derived Mesenchymal Stromal Cells (AD-MSC, 2.6 × 106) via retro-orbital infusion associated or not with simvastatin administrated daily via oral gavage (15 mg/kg/15d). Before and after these treatments, the histological and morphometrical analyses of the lung tissue, as so as lung function (whole body plethysmography) were evaluated. PAI-1 gene expression, an upregulated factor by ischemia that indicate a low survival of transplanted MSC, was also evaluated. The result regarding morphological and functional aspects of both lungs, presented no significant difference among the groups (AD-MSC or AD-MSC + Simvastatin). However, significant anatomical difference was observed in the right lung of the both groups of mice. The results shown a higher deposition of cells in the right lung, with might to be explained by anatomical differences (slightly higher right bronchi). Decreased levels of PAI-1 were observed in the simvastatin treated groups. The pulmonary ventilation was similar between the groups with only a tendency to a lower in the elastase treated animals due to a low respiratory frequency. In conclusion, the results suggest that both AD-MSC and simvastatin treatments could promote an improvement of morphological recovery of pulmonary emphysema, that it was more pronounced in the right lung.


Assuntos
Enfisema , Células-Tronco Mesenquimais , Enfisema Pulmonar , Animais , Modelos Animais de Doenças , Feminino , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Elastase Pancreática , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Sinvastatina/farmacologia
12.
Front Pharmacol ; 12: 679985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113255

RESUMO

Renovascular hypertension is a type of secondary hypertension caused by renal artery stenosis, leading to an increase in the renin-angiotensin-aldosterone system (RAAS). Two-kidney, 1-clip (2K1C) is a model of renovascular hypertension in which rats have an increased sodium intake induced by water deprivation (WD), a common situation found in the nature. In addition, a high-sodium diet in 2K1C rats induces glomerular lesion. Therefore, the purpose of this study was to investigate whether angiotensin II (ANG II) and/or aldosterone participates in the increased sodium intake in 2K1C rats under WD. In addition, we also verified if central AT1 and mineralocorticoid receptor blockade would change the high levels of arterial pressure in water-replete (WR) and WD 2K1C rats, because blood pressure changes can facilitate or inhibit water and sodium intake. Finally, possible central areas activated during WD or WD followed by partial rehydration (PR) in 2K1C rats were also investigated. Male Holtzman rats (150-180 g) received a silver clip around the left renal artery to induce renovascular hypertension. Six weeks after renal surgery, a stainless-steel cannula was implanted in the lateral ventricle, followed by 5-7 days of recovery before starting tests. Losartan (AT1 receptor antagonist) injected intracerebroventricularly attenuated water intake during the thirst test. Either icv losartan or RU28318 (mineralocorticoid receptor antagonist) reduced 0.3 M NaCl intake, whereas the combination of losartan and RU28318 icv totally blocked 0.3 M NaCl intake induced by WD in 2K1C rats. Losartan and RU28318 icv did not change hypertension levels of normohydrated 2K1C rats, but reduced the increase in mean arterial pressure (MAP) produced by WD. c-Fos expression increased in the lamina terminalis and in the NTS in WD condition, and increased even more after WD-PR. These results suggest the participation of ANG II and aldosterone acting centrally in the enhanced sodium intake in WD 2K1C rats, and not in the maintenance of hypertension in satiated and fluid-replete 2K1C rats.

13.
Front Physiol ; 12: 649535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967822

RESUMO

Despite being involved in homeostatic control and hydro-electrolyte balance, the contribution of medullary (A1 and A2) noradrenergic neurons to the hypertonic saline infusion (HSI)-induced cardiovascular response after hypotensive hemorrhage (HH) remains to be clarified. Hence, the present study sought to determine the role of noradrenergic neurons in HSI-induced hemodynamic recovery in male Wistar rats (290-320 g) with HH. Medullary catecholaminergic neurons were lesioned by nanoinjection of antidopamine-ß-hydroxylase-saporin (0.105 ng·nl-1) into A1, A2, or both (LES A1; LES A2; or LES A1+A2, respectively). Sham rats received nanoinjections of free saporin in the same regions (SHAM A1; SHAM A2; or SHAM A1+A2, respectively). After 15 days, rats were anesthetized and instrumented for cardiovascular recordings. Following 10 min of stabilization, HH was performed by withdrawing arterial blood until mean arterial pressure (MAP) reaches 60 mmHg. Subsequently, HSI was performed (NaCl 3 M; 1.8 ml·kg-1, i.v.). The HH procedure caused hypotension and bradycardia and reduced renal, aortic, and hind limb blood flows (RBF, ABF, and HBF). The HSI restored MAP, heart rate (HR), and RBF to baseline values in the SHAM, LES A1, and LES A2 groups. However, concomitant A1 and A2 lesions impaired this recovery, as demonstrated by the abolishment of MAP, RBF, and ABF responses. Although lesioning of only a group of neurons (A1 or A2) was unable to prevent HSI-induced recovery of cardiovascular parameters after hemorrhage, lesions of both A1 and A2 made this response unfeasible. These findings show that together the A1 and A2 neurons are essential to HSI-induced cardiovascular recovery in hypovolemia. By implication, simultaneous A1 and A2 dysfunctions could impair the efficacy of HSI-induced recovery during hemorrhage.

15.
Exp Physiol ; 106(5): 1263-1271, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33651463

RESUMO

NEW FINDINGS: What is the central question of this study? This study presents a new model for studying the rapid onset of severe, acute hyperkalaemia in rats with intact kidney function by administering an intragastric KCl load. What is the main finding and its importance? This new model of intragastric KCl load produces a reliable and reproducible model for studying the rapid onset of severe, acute hyperkalaemia in rats with intact kidney function. We report unprecedented rapid changes (30 min) in ECG, blood pressure and various arterial blood analyses with this new model, providing a solid foundation for future experiments in this field. ABSTRACT: A variety of animal models have been proposed to study hyperkalaemia, but most of them have meaningful limitations when the goal is to study the effect of potassium overload on healthy kidneys. In this study, we aimed to introduce a new approach for induction of hyperkalaemia in a reliable and reproducible animal model. We used intragastric administration of potassium chloride [KCl 2.3 M, 10 ml/(kg body weight)] to male Holtzman rats (300-350 g) to induce hyperkalaemia. The results showed that this potassium load can temporarily overwhelm the renal and extrarenal handling of this ion, causing an acute and severe hyperkalaemia that can be useful to study the effect of potassium imbalance in a variety of scenarios. Severe hyperkalaemia (>8 meqiv/l) and very profound ECG alterations, characterized by lengthening waves and intervals, were seen as early as 30 min after intragastric administration of KCl in rats. In addition, a transient increase in arterial blood pressure and time-dependent bradycardia were also seen after the KCl administration. No metabolic acidosis was present in the animals, and the potassium ion did not increase proportionally to chloride ion in the blood, leading to an increased anion gap. In conclusion, the results suggest that intragastric KCl loading is a reliable model to promote rapid and severe hyperkalaemia that can be used for further research on this topic.


Assuntos
Hiperpotassemia , Animais , Arritmias Cardíacas , Hiperpotassemia/etiologia , Rim , Masculino , Potássio , Cloreto de Potássio/farmacologia , Ratos
16.
Physiol Rep ; 9(2): e14714, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33463885

RESUMO

Restricting dietary sodium promotes sodium appetite in rats. Prolonged sodium restriction increases plasma potassium (pK), and elevated pK is largely responsible for a concurrent increase in aldosterone, which helps promote sodium appetite. In addition to increasing aldosterone, we hypothesized that elevated potassium directly influences the brain to promote sodium appetite. To test this, we restricted dietary potassium in sodium-deprived rats. Potassium restriction reduced pK and blunted the increase in aldosterone caused by sodium deprivation, but did not prevent sodium appetite or the activation of aldosterone-sensitive HSD2 neurons. Conversely, supplementing potassium in sodium-deprived rats increased pK and aldosterone, but did not increase sodium appetite or the activation of HSD2 neurons relative to potassium restriction. Supplementing potassium without sodium deprivation did not significantly increase aldosterone and HSD2 neuronal activation and only modestly increased saline intake. Overall, restricting dietary sodium activated the HSD2 neurons and promoted sodium appetite across a wide range of pK and aldosterone, and saline consumption inactivated the HSD2 neurons despite persistent hyperaldosteronism. In conclusion, elevated potassium is important for increasing aldosterone, but it is neither necessary nor sufficient for activating HSD2 neurons and increasing sodium appetite.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Aldosterona/metabolismo , Apetite/fisiologia , Dieta Hipossódica/métodos , Vias Neurais/fisiologia , Neurônios/fisiologia , Potássio/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Sódio/deficiência , Sódio/metabolismo
17.
Fundam Clin Pharmacol ; 35(5): 892-905, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33465820

RESUMO

Clonidine (CL) and Rilmenidine (RI) are among the most frequently prescribed centrally acting antihypertensives. Here, we compared CL and RI effects on psychogenic cardiovascular reactivity to sonant, luminous, motosensory, and vibrotactile stimuli during neurogenic hypertension. The femoral artery and vein of Wistar (WT - normotensive) and spontaneously hypertensive rats (SHR) were catheterized before (24 h interval) i.p. injection of vehicle (NaCl 0.9%, control - CT group), CL (10 µg/kg), or RI (10 µg/kg) and acute exposure to luminous (5000 lm), sonant (75 dB sudden tap), motor (180° cage twist), and air-jet (10 L/min - restraint and vibrotactile). Findings showed that: (i) CL or RI reduced the arterial pressure of SHR, without affecting basal heart rate in WT and SHR; (ii) different stimuli evoked pressor and tachycardic responses; (iii) CL and RI reduced pressor response to sound; (iv) CL or RI reduced pressor responses to luminous stimulus without a change in peak tachycardia in SHR; (v) cage twist increased blood pressure in SHR, which was attenuated by CL or RI; (vi) air-jet increased pressure and heart rate; (vii) CL or RI attenuated the pressor responses to air-jet in SHR while RI reduced the chronotropic reactivity in both strains. Altogether, both antihypertensives relieved the psychogenic cardiovascular responses to different stimuli. The RI elicited higher cardioprotective effects through a reduction in air-jet-induced tachycardia.


Assuntos
Anti-Hipertensivos/farmacologia , Sistema Cardiovascular/efeitos dos fármacos , Clonidina/farmacologia , Hipertensão/tratamento farmacológico , Rilmenidina/farmacologia , Animais , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Clonidina/uso terapêutico , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Rilmenidina/uso terapêutico
18.
Neuroendocrinology ; 111(1-2): 70-86, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31955161

RESUMO

BACKGROUND/AIMS: Furosemide is a loop diuretic widely used in clinical practice for the treatment of oedema and hypertension. The aim of this study was to determine physiological and molecular changes in the hypothalamic-neurohypophysial system as a consequence of furosemide-induced sodium depletion. METHODS: Male rats were sodium depleted by acute furosemide injection (10 and 30 mg/kg) followed by access to low sodium diet and distilled water for 24 h. The renal and behavioural consequences were evaluated, while blood and brains were collected to evaluate the neuroendocrine and gene expression responses. RESULTS: Furosemide treatment acutely increases urinary sodium and water excretion. After 24 h, water and food intake were reduced, while plasma angiotensin II and corticosterone were increased. After hypertonic saline presentation, sodium-depleted rats showed higher preference for salt. Interrogation using RNA sequencing revealed the expression of 94 genes significantly altered in the hypothalamic paraventricular nucleus (PVN) of sodium-depleted rats (31 upregulated and 63 downregulated). Out of 9 genes chosen, 5 were validated by quantitative PCR in the PVN (upregulated: Ephx2, Ndnf and Vwf; downregulated: Caprin2 and Opn3). The same genes were also assessed in the supraoptic nucleus (SON, upregulated: Tnnt1, Mis18a, Nr1d1 and Dbp; downregulated: Caprin2 and Opn3). As a result of these plastic transcriptome changes, vasopressin expression was decreased in PVN and SON, whilst vasopressin and oxytocin levels were reduced in plasma. CONCLUSIONS: We thus have identified novel genes that might regulate vasopressin gene expression in the hypothalamus controlling the magnocellular neurons secretory response to body sodium depletion and consequently hypotonic stress.


Assuntos
Diuréticos/farmacologia , Furosemida/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sódio/metabolismo , Transcriptoma/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Animais , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo , Transcriptoma/fisiologia , Vasopressinas/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia
19.
Compr Physiol ; 10(3): 1047-1083, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32941688

RESUMO

Obesity is a global epidemic in developed countries accounting for many of the metabolic and cardiorespiratory morbidities that occur in adults. These morbidities include type 2 diabetes, sleep-disordered breathing (SDB), obstructive sleep apnea, chronic intermittent hypoxia, and hypertension. Leptin, produced by adipocytes, is a master regulator of metabolism and of many other biological functions including central and peripheral circuits that control breathing. By binding to receptors on cells and neurons in the brainstem, hypothalamus, and carotid body, leptin links energy and metabolism to breathing. In this comprehensive article, we review the central and peripheral locations of leptin's actions that affect cardiorespiratory responses during health and disease, with a particular focus on obesity, SDB, and its effects during early development. Obesity-induced hyperleptinemia is associated with centrally mediated hypoventilation with decrease CO2 sensitivity. On the other hand, hyperleptinemia augments peripheral chemoreflexes to hypoxia and induces sympathoexcitation. Thus, "leptin resistance" in obesity is relative. We delineate the circuits responsible for these divergent effects, including signaling pathways. We review the unique effects of leptin during development on organogenesis, feeding behavior, and cardiorespiratory responses, and how undernutrition and overnutrition during critical periods of development can lead to cardiorespiratory comorbidities in adulthood. We conclude with suggestions for future directions to improve our understanding of leptin dysregulation and associated clinical diseases and possible therapeutic targets. Lastly, we briefly discuss the yin and the yang, specifically the contribution of relative adiponectin deficiency in adults with hyperleptinemia to the development of metabolic and cardiovascular disease. © 2020 American Physiological Society. Compr Physiol 10:1047-1083, 2020.


Assuntos
Adiponectina/deficiência , Leptina/metabolismo , Erros Inatos do Metabolismo/metabolismo , Obesidade/metabolismo , Síndromes da Apneia do Sono/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Adiponectina/metabolismo , Animais , Humanos , Erros Inatos do Metabolismo/patologia , Obesidade/patologia , Síndromes da Apneia do Sono/patologia , Apneia Obstrutiva do Sono/patologia
20.
Hypertens Res ; 43(11): 1192-1203, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32461634

RESUMO

Intracerebroventricular (icv) injection of hydrogen peroxide (H2O2) or the increase of endogenous H2O2 centrally produced by catalase inhibition with 3-amino-1,2,4-triazole (ATZ) injected icv reduces the pressor responses to central angiotensin II (ANG II) in normotensive rats. In the present study, we investigated the changes in the arterial pressure and in the pressor responses to ANG II icv in spontaneously hypertensive rats (SHRs) and 2-kidney, 1-clip (2K1C) hypertensive rats treated with H2O2 injected icv or ATZ injected icv or intravenously (iv). Adult male SHRs or Holtzman rats (n = 5-10/group) with stainless steel cannulas implanted in the lateral ventricle were used. In freely moving rats, H2O2 (5 µmol/1 µl) or ATZ (5 nmol/1 µl) icv reduced the pressor responses to ANG II (50 ng/1 µl) icv in SHRs (11 ± 3 and 17 ± 4 mmHg, respectively, vs. 35 ± 6 mmHg) and 2K1C hypertensive rats (3 ± 1 and 16 ± 3 mmHg, respectively, vs. 26 ± 2 mmHg). ATZ (3.6 mmol/kg of body weight) iv alone or combined with H2O2 icv also reduced icv ANG II-induced pressor response in SHRs and 2K1C hypertensive rats. Baseline arterial pressure was also reduced (-10 to -15 mmHg) in 2K1C hypertensive rats treated with H2O2 icv and ATZ iv alone or combined and in SHRs treated with H2O2 icv alone or combined with ATZ iv. The results suggest that exogenous or endogenous H2O2 acting centrally produces anti-hypertensive effects impairing central pressor mechanisms activated by ANG II in SHRs or 2K1C hypertensive rats.


Assuntos
Amitrol (Herbicida)/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Peróxido de Hidrogênio/administração & dosagem , Hipertensão/tratamento farmacológico , Oxidantes/administração & dosagem , Angiotensina II , Animais , Catalase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Infusões Intraventriculares , Masculino , Ratos Endogâmicos SHR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA