Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 16(12): 20141-20150, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36399696

RESUMO

The concept of strong light-matter coupling has been demonstrated in semiconductor structures, and it is poised to revolutionize the design and implementation of components, including solid state lasers and detectors. We demonstrate an original nanospectroscopy technique that permits the study of the light-matter interaction in single subwavelength-sized nanocavities where far-field spectroscopy is not possible using conventional techniques. We inserted a thin (∼150 nm) polymer layer with negligible absorption in the mid-infrared range (5 µm < λ < 12 µm) inside a metal-insulator-metal resonant cavity, where a photonic mode and the intersubband transition of a semiconductor quantum well are strongly coupled. The intersubband transition peaks at λ = 8.3 µm, and the nanocavity is overall 270 nm thick. Acting as a nonperturbative transducer, the polymer layer introduces only a limited alteration of the optical response while allowing to reveal the optical power absorbed inside the concealed cavity. Spectroscopy of the cavity losses is enabled by the polymer thermal expansion due to heat dissipation in the active part of the cavity, and performed using atomic force microscopy (AFM). This innovative approach allows the typical anticrossing characteristic of the polaritonic dispersion to be identified in the cavity loss spectra at the single nanoresonator level. Results also suggest that near-field coupling of the external drive field to the top metal patch mediated by a metal-coated AFM probe tip is possible, and it enables the near-field mapping of the cavity mode symmetry including in the presence of a strong light-matter interaction.

2.
Phys Rev Lett ; 127(18): 187401, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767424

RESUMO

We propose a unified description of intersubband absorption saturation for quantum wells inserted in a resonator, both in the weak and strong light-matter coupling regimes. We demonstrate how absorption saturation can be engineered. In particular, we show that the saturation intensity increases linearly with the doping in the strong coupling regime, while it remains doping independent in weak coupling. Hence, countering intuition, the most suitable region to exploit low saturation intensities is not the ultrastrong coupling regime, but is instead at the onset of the strong light-matter coupling. We further derive explicit conditions for the emergence of bistability. This Letter sets the path toward, as yet, nonexistent ultrafast midinfrared semiconductor saturable absorption mirrors (SESAMs) and bistable systems. As an example, we show how to design a midinfrared SESAM with a 3 orders of magnitude reduction in saturation intensity, down to ≈5 kW cm^{-2}.

3.
Nat Commun ; 12(1): 1427, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658507

RESUMO

Millimeter wave (mmWave) generation using photonic techniques has so far been limited to the use of near-infrared lasers that are down-converted to the mmWave region. However, such methodologies do not currently benefit from a monolithic architecture and suffer from the quantum defect i.e. the difference in photon energies between the near-infrared and mmWave region, which can ultimately limit the conversion efficiency. Miniaturized terahertz (THz) quantum cascade lasers (QCLs) have inherent advantages in this respect: their low energy photons, ultrafast gain relaxation and high nonlinearities open up the possibility of innovatively integrating both laser action and mmWave generation in a single device. Here, we demonstrate intracavity mmWave generation within THz QCLs over the unprecedented range of 25 GHz to 500 GHz. Through ultrafast time resolved techniques, we highlight the importance of modal phases and that the process is a result of a giant second-order nonlinearity combined with a phase matched process between the THz and mmWave emission. Importantly, this work opens up the possibility of compact, low noise mmWave generation using modelocked THz frequency combs.

4.
Nat Commun ; 12(1): 799, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547283

RESUMO

Applications relying on mid-infrared radiation (λ ~ 3-30 µm) have progressed at a very rapid pace in recent years, stimulated by scientific and technological breakthroughs like mid-infrared cameras and quantum cascade lasers. On the other side, standalone and broadband devices allowing control of the beam amplitude and/or phase at ultra-fast rates (GHz or more) are still missing. Here we show a free-space amplitude modulator for mid-infrared radiation (λ ~ 10 µm) that can operate at room temperature up to at least 1.5 GHz (-3dB cutoff at ~750 MHz). The device relies on a semiconductor heterostructure enclosed in a judiciously designed metal-metal optical resonator. At zero bias, it operates in the strong light-matter coupling regime up to 300 K. By applying an appropriate bias, the device transitions towards the weak-coupling regime. The large change in reflectance is exploited to modulate the intensity of a mid-infrared continuous-wave laser up to 1.5 GHz.

5.
Light Sci Appl ; 9: 51, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257182

RESUMO

The use of fundamental modelocking to generate short terahertz (THz) pulses and THz frequency combs from semiconductor lasers has become a routine affair, using quantum cascade lasers (QCLs) as a gain medium. However, unlike classic laser diodes, no demonstrations of harmonic modelocking, active or passive, have been shown in THz QCLs, where multiple pulses per round trip are generated when the laser is modulated at the harmonics of the cavity's fundamental round-trip frequency. Here, using time-resolved THz techniques, we show for the first time harmonic injection and mode-locking in which THz QCLs are modulated at the harmonics of the round-trip frequency. We demonstrate the generation of the harmonic electrical beatnote within a QCL, its injection locking to an active modulation and its direct translation to harmonic pulse generation using the unique ultrafast nature of our approach. Finally, we show indications of self-starting harmonic emission, i.e., without external modulation, where the QCL operates exclusively on a harmonic (up to its 15th harmonic) of the round-trip frequency. This behaviour is supported by time-resolved simulations of induced gain and loss in the system and shows the importance of the electronic, as well as photonic, nature of QCLs. These results open up the prospect of passive harmonic modelocking and THz pulse generation, as well as the generation of low-noise microwave generation in the hundreds of GHz region.

6.
Opt Express ; 27(2): 1672-1682, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30696229

RESUMO

We developed a technique that enables replacement of a metallic waveguide cladding with a low-index (n≈1.4) material - CaF2 or BaF2. It is transparent from the mid-IR up to the visible range: elevated confinement is preserved while introducing an optical entryway through the substrate. Replacing the metallic backplane also allows double-side patterning of the active region. Using this approach, we demonstrate strong light-matter coupling between an intersubband transition (λ∼10 µm) and a dispersive resonator at 300 K and at 78 K. Finally, we evaluate this approach's potential as a platform for waveguiding in the mid-IR spectral range, with numerical simulations that reveal losses in the 1-10 cm-1 range.

7.
Opt Express ; 23(5): 6915-23, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836911

RESUMO

We have demonstrated that a hybrid laser array, combining graded-photonic-heterostructure terahertz semiconductor lasers with a ring resonator, allows the relative phase (either symmetric or anti-symmetric) between the sources to be fixed by design. We have successfully phase-locked up to five separate lasers. Compared with a single device, we achieved a clear narrowing of the output beam profile.

8.
Opt Express ; 23(4): 4453-8, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836482

RESUMO

We demonstrate for the first time the integration of a superconducting hot electron bolometer (HEB) mixer and a quantum cascade laser (QCL) on the same 4-K stage of a single cryostat, which is of particular interest for terahertz (THz) HEB/QCL integrated heterodyne receivers for practical applications. Two key issues are addressed. Firstly, a low power consumption QCL is adopted for preventing its heat dissipation from destroying the HEB's superconductivity. Secondly, a simple spherical lens located on the same 4-K stage is introduced to optimize the coupling between the HEB and the QCL, which has relatively limited output power owing to low input direct current (DC) power. Note that simulation techniques are used to design the HEB/QCL integrated heterodyne receiver to avoid the need for mechanical tuning. The integrated HEB/QCL receiver shows an uncorrected noise temperature of 1500 K at 2.7 THz, which is better than the performance of the same receiver with all the components not integrated.

9.
Nat Commun ; 3: 952, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22805559

RESUMO

Symmetric and antisymmetric band-edge modes exist in distributed feedback surface-emitting semiconductor lasers, with the dominant difference being the radiation loss. Devices generally operate on the low-loss antisymmetric modes, although the power extraction efficiency is low. Here we develop graded photonic heterostructures, which localize the symmetric mode in the device centre and confine the antisymmetric modes close to the laser facet. This modal spatial separation is combined with absorbing boundaries to increase the antisymmetric mode loss, and force device operation on the symmetric mode, with elevated radiation efficiency. Application of this concept to terahertz quantum cascade lasers leads to record-high peak-power surface emission (>100 mW) and differential efficiencies (230 mW A(-1)), together with low-divergence, single-lobed emission patterns, and is also applicable to continuous-wave operation. Such flexible tuning of the radiation loss using graded photonic heterostructures, with only a minimal influence on threshold current, is highly desirable for optimizing second-order distributed feedback lasers.


Assuntos
Lasers Semicondutores , Fótons
10.
Opt Express ; 18(11): 11979-89, 2010 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-20589060

RESUMO

We have developed surface-emitting single-mode quantum cascade lasers which employ high-contrast photonic-crystal resonators. The devices operate on band-edge states of the photonic band-structure. The mode profile and polarization characteristics of the band-edge modes are calculated by three-dimensional finite-difference time-domain simulation. Experimentally, the spectral properties, the far-field patterns, and the polarization characteristics of the lasers are determined and compared with simulations. The good agreement between the simulations and the experiments confirms that the hexapolar mode at the Gamma-point band-edge gives rise to lasing. By using a novel and advanced fabrication method, deep and vertical PhC holes are fabricated with no metal redeposition on the sidewalls, which improves the laser performance with respect to the current status. The angular of the output beam is approximately 15 masculine, and the side mode suppression ratio of the single mode emission is about 25 dB. The threshold current density at 78 K and the maximum operation temperature are 7.6 kA/cm2 and 220 K, respectively. The performance is mainly limited by the loss induced by surface plasmon waveguide, which can be overcome by using an optimized dielectric waveguide structure.


Assuntos
Lasers , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons , Teoria Quântica , Vibração
11.
Opt Lett ; 35(6): 859-61, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20237623

RESUMO

We report single-mode, surface-emitting, mid-IR, photonic-crystal (PhC), quantum-cascade lasers with linearly polarized and highly directional single-lobed emission. A metallic square-lattice photonic crystal with elliptical air holes and pi phase shift was used as the resonator. The 2D feedback coupling--necessary for the operation of the photonic-crystal resonator--is induced by the mismatch between the modes supported by metalized and nonmetalized regions and yields single-mode output with a side-mode suppression ratio >30 dB. The elliptical air holes modify the relative intensities of the TM field components (H(x) and H(y)) in the PhC plane, thus yielding linearly polarized emission. The pi phase shift allows the system to produce a single-lobed pattern in the far field with a narrow divergence angle (2.4 degrees x 1.8 degrees). The emission is perfectly orthogonal to the device surface, and the maximum operating temperature--still limited by the metallic ohmic losses--is 240 K.

12.
Opt Express ; 16(9): 6387-96, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18545342

RESUMO

We report a proof-of-principle of surface detection with air-guided quantum cascade lasers. Laser ridges were designed to exhibit an evanescent electromagnetic field on their top surface that can interact with material or liquids deposited on the device. We employ photoresist and common solvents to provide a demonstration of the sensor setup. We observed spectral as well as threshold currents changes as a function of the deposited material absorption curve. A simple model, supplemented by 2D numerical finite element method simulations, allows one to explain and correctly predict the experimental results.


Assuntos
Ar , Lasers Semicondutores , Absorção , Modelos Teóricos , Propriedades de Superfície
13.
Opt Express ; 15(10): 5948-65, 2007 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19546898

RESUMO

We present the design of mid-infrared and THz quantum cascade laser cavities formed from planar photonic crystals with a complete in-plane photonic bandgap. The design is based on a honeycomb lattice, and achieves a full in-plane photonic gap for transverse-magnetic polarized light while preserving a connected pattern for efficient electrical injection. Candidate defects modes for lasing are identified. This lattice is then used as a model system to demonstrate a novel effect: under certain conditions - that are typically satisfied in the THz range - a complete photonic gap can be obtained by the sole patterning of the top metal contact. This possibility greatly reduces the required fabrication complexity and avoids potential damage of the semiconductor active region.

14.
Science ; 302(5649): 1374-7, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-14593186

RESUMO

We combine photonic and electronic band structure engineering to create a surface-emitting quantum cascade microcavity laser. A high-index contrast two-dimensional photonic crystal is used to form a micro-resonator that simultaneously provides feedback for laser action and diffracts light vertically from the surface of the semiconductor surface. A top metallic contact allows electrical current injection and provides vertical optical confinement through a bound surface plasmon wave. The miniaturization and tailorable emission properties of this design are potentially important for sensing applications, while electrical pumping can allow new studies of photonic crystal and surface plasmon structures in nonlinear and near-field optics.

15.
Phys Rev Lett ; 90(4): 043902, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12570424

RESUMO

We demonstrate an efficient intracavity nonlinear interaction of laser modes in a specially adapted quantum cascade laser. A two-wavelength quantum cascade laser structure emitting at wavelengths of 7.1 and 9.5 micrometer included cascaded resonant optical intersubband transitions in an intracavity configuration leading to resonantly enhanced sum-frequency and second-harmonic generation at wavelengths of 4.1, 3.6, and 4.7 micrometer respectively. Laser peak optical powers of 60 and 80 mW resulted in 30 nW of sum-frequency signal and 10-15 nW of second-harmonic signal, both in good agreement with theoretical calculations.

16.
Nature ; 415(6874): 883-7, 2002 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-11859362

RESUMO

The fundamental mechanism behind laser action leads in general only to narrowband, single-wavelength emission. Several approaches for achieving spectrally broadband laser action have been put forward, such as enhancing the optical feedback in the wings of the gain spectrum, multi-peaked gain spectra, and the most favoured technique at present, ultrashort pulse excitation. Each of these approaches has drawbacks, such as a complex external laser cavity configuration, a non-flat optical gain envelope function, or an inability to operate in continuous mode, respectively. Here we present a monolithic, mid-infrared 'supercontinuum' semiconductor laser that has none of these drawbacks. We adopt a quantum cascade configuration, where a number of dissimilar intersubband optical transitions are made to cooperate in order to provide broadband optical gain from 5 to 8 microm wavelength. Laser action with a Fabry-Pérot spectrum covering all wavelengths from 6 to 8 microm simultaneously is demonstrated with this approach. Lasers that emit light over such an extremely wide wavelength range are of interest for applications as varied as terabit optical data communications or ultra-precision metrology and spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA