Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
ACS Nano ; 18(3): 2047-2065, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38166155

RESUMO

The use of piezoelectric nanomaterials combined with ultrasound stimulation is emerging as a promising approach for wirelessly triggering the regeneration of different tissue types. However, it has never been explored for boosting chondrogenesis. Furthermore, the ultrasound stimulation parameters used are often not adequately controlled. In this study, we show that adipose-tissue-derived mesenchymal stromal cells embedded in a nanocomposite hydrogel containing piezoelectric barium titanate nanoparticles and graphene oxide nanoflakes and stimulated with ultrasound waves with precisely controlled parameters (1 MHz and 250 mW/cm2, for 5 min once every 2 days for 10 days) dramatically boost chondrogenic cell commitment in vitro. Moreover, fibrotic and catabolic factors are strongly down-modulated: proteomic analyses reveal that such stimulation influences biological processes involved in cytoskeleton and extracellular matrix organization, collagen fibril organization, and metabolic processes. The optimal stimulation regimen also has a considerable anti-inflammatory effect and keeps its ability to boost chondrogenesis in vitro, even in an inflammatory milieu. An analytical model to predict the voltage generated by piezoelectric nanoparticles invested by ultrasound waves is proposed, together with a computational tool that takes into consideration nanoparticle clustering within the cell vacuoles and predicts the electric field streamline distribution in the cell cytoplasm. The proposed nanocomposite hydrogel shows good injectability and adhesion to the cartilage tissue ex vivo, as well as excellent biocompatibility in vivo, according to ISO 10993. Future perspectives will involve preclinical testing of this paradigm for cartilage regeneration.


Assuntos
Condrogênese , Proteômica , Nanogéis , Hidrogéis/farmacologia , Diferenciação Celular , Engenharia Tecidual
2.
BMC Cancer ; 23(1): 1194, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057796

RESUMO

BACKGROUND: Myxofibrosarcoma is a rare malignant soft tissue sarcoma characterised by multiple local recurrence and can become of higher grade with each recurrence. Consequently, myxofibrosarcoma represents a burden for patients, a challenge for clinicians, and an interesting disease to study tumour progression. Currently, few myxofibrosarcoma preclinical models are available. METHODS: In this paper, we present a spontaneously immortalised myxofibrosarcoma patient-derived cell line (MF-R 3). We performed phenotypic characterization through multiple biological assays and analyses: proliferation, clonogenic potential, anchorage-independent growth and colony formation, migration, invasion, AgNOR staining, and ultrastructural evaluation. RESULTS: MF-R 3 cells match morphologic and phenotypic characteristics of the original tumour as 2D cultures, 3D aggregates, and on the chorioallantoic membrane of chick embryos. Overall results show a clear neoplastic potential of this cell line. Finally, we tested MF-R 3 sensitivity to anthracyclines in 2D and 3D conditions finding a good response to these drugs. CONCLUSIONS: In conclusion, we established a novel patient-derived myxofibrosarcoma cell line that, together with the few others available, could serve as an important model for studying the molecular pathogenesis of myxofibrosarcoma and for testing new drugs and therapeutic strategies in diverse experimental settings.


Assuntos
Fibrossarcoma , Histiocitoma Fibroso Maligno , Sarcoma , Animais , Adulto , Humanos , Embrião de Galinha , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/patologia , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Linhagem Celular Tumoral
3.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834212

RESUMO

Osteochondral lesions, when not properly treated, may evolve into osteoarthritis (OA), especially in the elderly population, where altered joint function and quality are usual. To date, a collagen/collagen-magnesium-hydroxyapatite (Col/Col-Mg-HAp) scaffold (OC) has demonstrated good clinical results, although suboptimal subchondral bone regeneration still limits its efficacy. This study was aimed at evaluating the in vitro osteogenic potential of this scaffold, functionalized with two different strategies: the addition of Bone Morphogenetic Protein-2 (BMP-2) and the incorporation of strontium (Sr)-ion-enriched amorphous calcium phosphate (Sr-ACP) granules. Human osteoblasts were seeded on the functionalized scaffolds (OC+BMP-2 and OC+Sr-ACP, compared to OC) under stress conditions reproduced with the addition of H2O2 to the culture system, as well as in normal conditions, and evaluated in terms of morphology, metabolic activity, gene expression, and matrix synthesis. The OC+BMP-2 scaffold supported a better osteoblast morphology and stimulated scaffold colonization, cell activity, and extracellular matrix secretion, especially in the stressed culture environment but also in normal culture conditions, with increased expression of genes related to osteoblast differentiation. In conclusion, the incorporation of BMP-2 into the Col/Col-Mg-HAp scaffold also represents an improvement of the osteochondral scaffold in more challenging conditions, supporting further preclinical studies to optimize it for use in clinical practice.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Idoso , Humanos , Materiais Biocompatíveis/farmacologia , Peróxido de Hidrogênio , Regeneração Óssea , Osteogênese/fisiologia , Colágeno , Durapatita , Osteoblastos
4.
Cancer Gene Ther ; 30(9): 1285-1295, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37353558

RESUMO

Ewing sarcoma (EWS) is a challenging pediatric cancer characterized by vast intra-tumor heterogeneity. We evaluated the RNA-binding protein IGF2BP3, whose high expression correlates with a poor prognosis and an elevated tendency of metastases, as a possible soluble mediator of inter-cellular communication in EWS. Our data demonstrate that (i) IGF2BP3 is detected in cell supernatants, and it is released inside extracellular vesicles (EVs); (ii) EVs from IGF2BP3-positive or IGF2BP3-negative EWS cells reciprocally affect cell migration but not the proliferation of EWS recipient cells; (iii) EVs derived from IGF2BP3-silenced cells have a distinct miRNA cargo profile and inhibit the PI3K/Akt pathway in recipient cells; (iv) the 11 common differentially expressed miRNAs associated with IGF2BP3-positive and IGF2BP3-negative EVs correctly group IGF2BP3-positive and IGF2BP3-negative clinical tissue specimens. Overall, our data suggest that IGF2BP3 can participate in the modulation of phenotypic heterogeneity.


Assuntos
Vesículas Extracelulares , Sarcoma de Ewing , Criança , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Vesículas Extracelulares/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia
5.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239904

RESUMO

Osteosarcoma (OS) is the most common primary malignant bone tumor and its etiology has recently been associated with osteogenic differentiation dysfunctions. OS cells keep a capacity for uncontrolled proliferation showing a phenotype similar to undifferentiated osteoprogenitors with abnormal biomineralization. Within this context, both conventional and X-ray synchrotron-based techniques have been exploited to deeply characterize the genesis and evolution of mineral depositions in a human OS cell line (SaOS-2) exposed to an osteogenic cocktail for 4 and 10 days. A partial restoration of the physiological biomineralization, culminating with the formation of hydroxyapatite, was observed at 10 days after treatment together with a mitochondria-driven mechanism for calcium transportation within the cell. Interestingly, during differentiation, mitochondria showed a change in morphology from elongated to rounded, indicating a metabolic reprogramming of OS cells possibly linked to an increase in glycolysis contribution to energy metabolism. These findings add a dowel to the genesis of OS giving new insights on the development of therapeutic strategies able to restore the physiological mineralization in OS cells.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Osteogênese , Biomineralização , Linhagem Celular Tumoral , Osteossarcoma/metabolismo , Diferenciação Celular/fisiologia , Mitocôndrias/metabolismo , Neoplasias Ósseas/metabolismo , Proliferação de Células/fisiologia
6.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047537

RESUMO

Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure and aplastic anemia. So far, 23 genes are involved in this pathology, and their mutations lead to a defect in DNA repair. In recent years, it has been observed that FA cells also display mitochondrial metabolism defects, causing an accumulation of intracellular lipids and oxidative damage. However, the molecular mechanisms involved in the metabolic alterations have not yet been elucidated. In this work, by using lymphoblasts and fibroblasts mutated for the FANC-A gene, oxidative phosphorylation (OxPhos) and mitochondria dynamics markers expression was analyzed. Results show that the metabolic defect does not depend on an altered expression of the proteins involved in OxPhos. However, FA cells are characterized by increased uncoupling protein UCP2 expression. FANC-A mutation is also associated with DRP1 overexpression that causes an imbalance in the mitochondrial dynamic toward fission and lower expression of Parkin and Beclin1. Treatment with P110, a specific inhibitor of DRP1, shows a partial mitochondrial function recovery and the decrement of DRP1 and UCP2 expression, suggesting a pivotal role of the mitochondrial dynamics in the etiopathology of Fanconi anemia.


Assuntos
Anemia de Fanconi , Dinâmica Mitocondrial , Humanos , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas/metabolismo , Dinaminas/metabolismo
7.
Gels ; 8(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36547290

RESUMO

Autophagy is a cellular process that contributes to the maintenance of cell homeostasis through the activation of a specific path, by providing the necessary factors in stressful and physiological situations. Autophagy plays a specific role in chondrocyte differentiation; therefore, we aimed to analyze this process in adipose-derived mesenchymal stromal cells (ASCs) laden in three-dimensional (3D) hydrogel. We analyzed chondrogenic and autophagic markers using molecular biology, immunohistochemistry, and electron microscopy. We demonstrated that ASCs embedded in 3D hydrogel showed an increase expression of typical autophagic markers Beclin 1, LC3, and p62, associated with clear evidence of autophagic vacuoles in the cytoplasm. During ASCs chondrogenic differentiation, we showed that autophagic markers declined their expression and autophagic vesicles were rare, while typical chondrogenic markers collagen type 2, and aggrecan were significantly increased. In line with developmental animal models of cartilage, our data showed that in a 3D hydrogel, ASCs increased their autophagic features. This path is the fundamental prerequisite for the initial phase of differentiation that contributes to fueling the cells with energy and factors necessary for chondrogenic differentiation.

8.
Pharmaceutics ; 14(3)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35336051

RESUMO

Osteosarcoma treatment is moving towards more effective combination therapies. Nevertheless, these approaches present distinctive challenges that can complicate the clinical translation, such as increased toxicity and multi-drug resistance. Drug co-encapsulation within a nanoparticle formulation can overcome these challenges and improve the therapeutic index. We previously synthetized keratin nanoparticles functionalized with Chlorin-e6 (Ce6) and paclitaxel (PTX) to combine photo (PDT) and chemotherapy (PTX) regimens, and the inhibition of osteosarcoma cells growth in vitro was demonstrated. In the current study, we generated an orthotopic osteosarcoma murine model for the preclinical evaluation of our combination therapy. To achieve maximum reproducibility, we systematically established key parameters, such as the number of cells to generate the tumor, the nanoparticles dose, the design of the light-delivery device, the treatment schedule, and the irradiation settings. A 60% engrafting rate was obtained using 10 million OS cells inoculated intratibial, with the tumor model recapitulating the histological hallmarks of the human counterpart. By scheduling the treatment as two cycles of injections, a 32% tumor reduction was obtained with PTX mono-therapy and a 78% reduction with the combined PTX-PDT therapy. Our findings provide the in vivo proof of concept for the subsequent clinical development of a combination therapy to fight osteosarcoma.

9.
Cancers (Basel) ; 14(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35205627

RESUMO

Exploiting the tumor environment features (EPR effect, elevated glutathione, reactive oxygen species levels) might allow attaining a selective and responsive carrier capable of improving the therapeutic outcome. To this purpose, the in situ covalent binding of drugs and nanoparticles to circulating human serum albumin (HSA) might represent a pioneering approach to achieve an effective strategy. This study describes the synthesis, in vitro and in vivo evaluation of bioresponsive HSA-binding nanoparticles (MAL-PTX2S@Pba), co-delivering two different paclitaxel (PTX) prodrugs and the photosensitizer pheophorbide a (Pba), for the combined photo- and chemo-treatment of breast cancer. Stable and reproducible MAL-PTX2S@Pba nanoparticles with an average diameter of 82 nm and a PTX/Pba molar ratio of 2.5 were obtained by nanoprecipitation. The in vitro 2D combination experiments revealed that MAL-PTX2S@Pba treatment induces a strong inhibition of cell viability of MDA-MB-231, MCF7 and 4T1 cell lines, whereas 3D experiments displayed different trends: while MAL-PTX2S@Pba effectiveness was confirmed against MDA-MB-231 spheroids, the 4T1 model exhibited marked resistance. Lastly, despite using a low PTX-PDT regimen (e.g., 8.16 mg/Kg PTX and 2.34 mg/Kg Pba), our formulation showed to foster primary tumor reduction and curb lung metastases growth in 4T1 tumor-bearing mice, thus setting the basis for further preclinical validations.

10.
Cancers (Basel) ; 13(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34831016

RESUMO

Osteosarcoma is the most frequent primary malignant bone tumour with an impressive tendency to metastasise. Highly proliferative tumour cells release a remarkable amount of protons into the extracellular space that activates the NF-kB inflammatory pathway in adjacent stromal cells. In this study, we further validated the correlation between tumour glycolysis/acidosis and its role in metastases. In patients, at diagnosis, we found high circulating levels of inflammatory mediators (IL6, IL8 and miR-136-5p-containing extracellular vesicles). IL6 serum levels significantly correlated with disease-free survival and 18F-FDG PET/CT uptake, an indirect measurement of tumour glycolysis and, hence, of acidosis. In vivo subcutaneous and orthotopic models, co-injected with mesenchymal stromal (MSC) and osteosarcoma cells, formed an acidic tumour microenvironment (mean pH 6.86, as assessed by in vivo MRI-CEST pH imaging). In these xenografts, we enlightened the expression of both IL6 and the NF-kB complex subunit in stromal cells infiltrating the tumour acidic area. The co-injection with MSC also significantly increased lung metastases. Finally, by using 3D microfluidic models, we directly showed the promotion of osteosarcoma invasiveness by acidosis via IL6 and MSC. In conclusion, osteosarcoma-associated MSC react to intratumoural acidosis by triggering an inflammatory response that, in turn, promotes tumour invasiveness at the primary site toward metastasis development.

11.
Pharmaceutics ; 13(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34452091

RESUMO

Cancer therapy is still a challenging issue. To address this, the combination of anticancer drugs with other therapeutic modalities, such as light-triggered therapies, has emerged as a promising approach, primarily when both active ingredients are provided within a single nanosystem. Herein, we describe the unprecedented preparation of tumor microenvironment (TME) responsive nanoparticles exclusively composed of a paclitaxel (PTX) prodrug and the photosensitizer pheophorbide A (PheoA), e.g., PheoA≅PTX2S. This system aimed to achieve both the TME-triggered and controlled release of PTX and the synergistic/additive effect by PheoA-mediated photodynamic therapy. PheoA≅PTX2S were produced in a simple one-pot process, exhibiting excellent reproducibility, stability, and the ability to load up to 100% PTX and 40% of PheoA. Exposure of PheoA≅PTX2S nanoparticles to TME-mimicked environment provided fast disassembly compared to normal conditions, leading to PTX and PheoA release and consequently elevated cytotoxicity. Our data indicate that PheoA incorporation into nanoparticles prevents its aggregation, thus providing a greater extent of ROS and singlet oxygen production. Importantly, in SK-OV-3 cells, PheoA≅PTX2S allowed a 30-fold PTX dose reduction and a 3-fold dose reduction of PheoA. Our data confirm that prodrug-based nanocarriers represent valuable and sustainable drug delivery systems, possibly reducing toxicity and expediting preclinical and clinical translation.

12.
Mater Sci Eng C Mater Biol Appl ; 122: 111899, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641902

RESUMO

The high rates of aggressiveness, drug resistance and relapse of breast cancer (BC) are mainly attributed to the inability of conventional therapies to equally eradicate bulk differentiated cells and cancer stem cells (CSCs). To improve the effectiveness of BC treatments, we report the in-water synthesis of novel keratin-based nanoformulations, loaded with the CSC-specific drug salinomycin (SAL), the photosensitizer chlorin e6 (Ce6) and vitamin E acetate (SAL/Ce6@kVEs), which combine the capability of releasing SAL with the production of singlet oxygen upon light irradiation. In vitro experiments on BC cell lines and CSC-enriched mammospheres exposed to single or combined therapies showed that SAL/Ce6@kVEs determine synergistic cell killing, limit their self-renewal capacity and decrease the stemness potential by eradication of CSCs. In vivo experiments on zebrafish embryos confirmed the capacity of SAL nanoformulations to interfere with the Wnt/ß-catenin signaling pathway, which is dysregulated in BC, thus identifying a target for further translation into pre-clinical models.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Animais , Linhagem Celular Tumoral , Humanos , Queratinas , Piranos , Peixe-Zebra
13.
Cancers (Basel) ; 13(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467731

RESUMO

Acidity is a key player in cancer progression, modelling a microenvironment that prevents immune surveillance and enhances invasiveness, survival, and drug resistance. Here, we demonstrated in spheroids from osteosarcoma cell lines that the exposure to acidosis remarkably caused intracellular lipid droplets accumulation. Lipid accumulation was also detected in sarcoma tissues in close proximity to tumor area that express the acid-related biomarker LAMP2. Acid-induced lipid droplets-accumulation was not functional to a higher energetic request, but rather to cell survival. As a mechanism, we found increased levels of sphingomyelin and secretion of the sphingosine 1-phosphate, and the activation of the associated sphingolipid pathway and the non-canonical NF-ĸB pathway, respectively. Moreover, decreasing sphingosine 1-phosphate levels (S1P) by FTY720 (Fingolimod) impaired acid-induced tumor survival and migration. As a confirmation of the role of S1P in osteosarcoma, we found S1P high circulating levels (30.8 ± 2.5 nmol/mL, n = 17) in the serum of patients. Finally, when we treated osteosarcoma xenografts with FTY720 combined with low-serine/glycine diet, both lipid accumulation (as measured by magnetic resonance imaging) and tumor growth were greatly inhibited. For the first time, this study profiles the lipidomic rearrangement of sarcomas under acidic conditions, suggesting the use of anti-S1P strategies in combination with standard chemotherapy.

14.
Acta Myol ; 40(4): 177-183, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35047758

RESUMO

Myofibrillar myopathies are a heterogeneous group of neuromuscular disorders characterized by degeneration of Z-disk, causing the disintegration of myofibrils. They may be caused by mutations in different genes, among these, the BAG3 gene (Bcl-2 associed-athanogene-3) encodes a multidomain protein that plays an important role in many cellular processes. We report the case of a 16-year-old male who at 4 years of age presented with a hypertrophic obstructive cardiomyopathy, then developed axonal sensory motor polyneuropathy, muscle weakness, rigid spine, severe kyphoscoliosis and respiratory failure. Muscle biopsy showed the typical hallmark of myofibrillar myopathy with abnormal cytoplasmic expression of multiple proteins. Ade novo heterozygous common mutation in the BAG3 gene with a c.626C > T (p.Pro209Leu) was discovered on NGS genetic analysis. Mutations in the BAG3 gene are causes of a severe and progressive condition and natural history data are important to be collected. An early diagnosis is critical for prognostic implications in cardiomyopathy and respiratory failure treatment.


Assuntos
Cardiomiopatias , Miopatias Congênitas Estruturais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Criança , Humanos , Masculino , Mutação , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/genética
15.
Nutrients ; 12(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317151

RESUMO

Chronic metabolic acidosis leads to bone-remodelling disorders based on excessive mineral matrix resorption and inhibition of bone formation, but also affects the homeostasis of citrate, which is an essential player in maintaining the acid-base balance and in driving the mineralisation process. This study aimed to investigate the impact of acidosis on the osteogenic properties of bone-forming cells and the effects of citrate supplementation in restoring the osteogenic features impaired by the acidic milieu. For this purpose, human mesenchymal stromal cells were cultured in an osteogenic medium and the extracellular matrix mineralisation was analysed at the micro- and nano-level, both in neutral and acidic conditions and after treatment with calcium citrate and potassium citrate. The acidic milieu significantly decreased the citrate release and hindered the organisation of the extracellular matrix, but the citrate supplementation increased collagen production and, particularly calcium citrate, promoted the mineralisation process. Moreover, the positive effect of citrate supplementation was observed also in the physiological microenvironment. This in vitro study proves that the mineral matrix organisation is influenced by citrate availability in the microenvironment surrounding bone-forming cells, thus providing a biological basis for using citrate-based supplements in the management of bone-remodelling disorders related to chronic low-grade acidosis.


Assuntos
Acidose/tratamento farmacológico , Remodelação Óssea/efeitos dos fármacos , Quelantes de Cálcio/farmacologia , Ácido Cítrico/farmacologia , Suplementos Nutricionais , Osteogênese/efeitos dos fármacos , Equilíbrio Ácido-Base/efeitos dos fármacos , Quelantes de Cálcio/administração & dosagem , Células Cultivadas , Ácido Cítrico/administração & dosagem , Humanos , Técnicas In Vitro
16.
Bone ; 134: 115302, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32112988

RESUMO

Giant cell tumour of bone (GCTB) is a histologically benign, locally aggressive skeletal lesion with an unpredictable propensity to relapse after surgery and a rare metastatic potential. The microscopic picture of GCTB shows different cell types, including multinucleated giant cells, mononuclear cells of the macrophage-monocyte lineage, and spindle cells. The histogenesis of GCTB is still debated, and morphologic, radiographic or molecular features are not predictive of the clinical course. Characterization of the unexplored cell metabolism of GCTB offers significant clues for the understanding of this elusive pathologic entity. In this study we aimed to characterize GCTB energetic metabolism, with a particular focus on lactate release and the expression of monocarboxylate transporters, to lie down a novel path for understanding the pathophysiology of this tumour. We measured the expression of glycolytic markers (GAPDH, PKM2, MCT4, GLUT1, HK1, LDHA, lactate release) in 25 tissue samples of GCTB by immunostaining and by mRNA and ELISA analyses. We also evaluated MCT1 and MCT4 expression and oxidative markers (JC1 staining and Bec index) in tumour-derived spindle cell cultures and CD14+ monocytic cells. Finally, we quantified the intratumoural and circulating levels of lactate in a series of 17 subjects with GCTB. In sharp contrast to the benign histological features of GCTB, we found a high expression of glycolytic markers, with particular reference to MCT4. Unexpectedly, this was mainly confined to the giant cell, not proliferating cell component. Accordingly, GCTB patients showed higher levels of blood lactate as compared to healthy subjects. In conclusion, taken together, our data indicate that GCTB is characterized by a highly glycolytic metabolism of its giant cell component, opening new perspectives on the pathogenesis, the natural history, and the treatment of this lesion.


Assuntos
Neoplasias Ósseas , Tumor de Células Gigantes do Osso , Ácido Láctico , Transportadores de Ácidos Monocarboxílicos , Proteínas Musculares , Neoplasias Ósseas/genética , Tumor de Células Gigantes do Osso/genética , Glicólise , Humanos , Ácido Láctico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo
17.
J Exp Clin Cancer Res ; 39(1): 40, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087737

RESUMO

BACKGROUND: Osteosarcoma (OS) is an aggressive malignant neoplasm that still suffers from poor prognosis in the case of distal metastases or occurrence of multi-drug resistance. It is therefore crucial to find novel therapeutic options able to go beyond these limitations and improve patients' survival. The objective of this study is to exploit the intrinsic properties of mesenchymal stromal cells (MSCs) to migrate and infiltrate the tumor stroma to specifically deliver therapeutic agents directly to cancer cells. In particular, we aimed to test the efficacy of the photoactivation of MSCs loaded with nanoparticles in vitro and in a murine in vivo ectopic osteosarcoma model. METHODS: AlPcS4@FNPs were produced by adding tetra-sulfonated aluminum phthalocyanine (AlPcS4) to an aqueous solution of positively charged poly-methyl methacrylate core-shell fluorescent nanoparticles (FNPs). The photodynamic therapy (PDT) effect is achieved by activation of the photosensitizer AlPcS4 in the near-infrared light with an LED source. Human MSCs were isolated from the bone marrow of five donors to account for inter-patients variability and used in this study after being evaluated for their clonogenicity, multipotency and immunophenotypic profile. MSC lines were then tested for the ability to internalize and retain the nanoparticles, along with their migratory properties in vitro. Photoactivation effect was evaluated both in a monolayer (2D) co-culture of AlPcS4@FNPs loaded MSCs with human OS cells (SaOS-2) and in tridimensional (3D) multicellular spheroids (AlPcS4@FNPs loaded MSCs with human OS cells, MG-63). Cell death was assessed by AnnexinV/PI and Live&Dead CalceinAM/EthD staining in 2D, while in the 3D co-culture, the cell killing effect was measured through ATP content, CalceinAM/EthD staining and TEM imaging. We also evaluated the effectiveness of AlPcS4@FNPs loaded MSCs as delivery systems and the ability of the photodynamic treatment to kill cancer cells in a subcutaneous mouse model of OS by bioluminescence imaging (BLI) and histology. RESULTS: MSCs internalized AlPcS4@FNPs without losing or altering their motility and viability in vitro. Photoactivation of AlPcS4@FNPs loaded MSCs induced high level of OS cells death in the 2D co-culture. Similarly, in the 3D co-culture (MSCs:OS ratios 1:1 or 1:3), a substantial decrease of both MSCs and OS cells viability was observed. Notably, when increasing the MSCs:OS ratio to 1:7, photoactivation still caused more than 40% cells death. When tested in an in vivo ectopic OS model, AlPcS4@FNPs loaded MSCs were able to decrease OS growth by 68% after two cycles of photoactivation. CONCLUSIONS: Our findings demonstrate that MSCs can deliver functional photosensitizer-decorated nanoparticles in vitro and in vivo and inhibit OS tumor growth. MSCs may be an effective platform for the targeted delivery of therapeutic nanodrugs in a clinical scenario, alone or in combination with other osteosarcoma treatment modalities.


Assuntos
Neoplasias Ósseas/terapia , Indóis/administração & dosagem , Células-Tronco Mesenquimais/citologia , Compostos Organometálicos/administração & dosagem , Osteossarcoma/terapia , Fármacos Fotossensibilizantes/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Humanos , Indóis/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/química , Camundongos , Nanopartículas , Compostos Organometálicos/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Am J Hum Genet ; 105(4): 689-705, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31495489

RESUMO

Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4). Overexpression of human Myc-tagged SMPD4 showed localization both to the outer nuclear envelope and the ER and additionally revealed interactions with several nuclear pore complex proteins by proteomics analysis. Fibroblasts from affected individuals showed ER cisternae abnormalities, suspected for increased autophagy, and were more susceptible to apoptosis under stress conditions, while treatment with siSMPD4 caused delayed cell cycle progression. Our data show that SMPD4 links homeostasis of membrane sphingolipids to cell fate by regulating the cross-talk between the ER and the outer nuclear envelope, while its loss reveals a pathogenic mechanism in microcephaly.


Assuntos
Artrogripose/genética , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Esfingomielina Fosfodiesterase/genética , Artrogripose/patologia , Linhagem da Célula , Criança , Retículo Endoplasmático/metabolismo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Microcefalia/patologia , Mitose , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Splicing de RNA
19.
J Photochem Photobiol B ; 199: 111598, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31465971

RESUMO

The combination of chemotherapy and photodynamic therapy (PDT) is considered a valuable strategy for increasing therapeutic response in cancer treatment, and the re-formulation of pharmaceuticals in biocompatible nanoparticles (NPs) is particularly appealing for the possibility of co-loading drugs exerting cytotoxicity by different mechanisms, with the aim to produce synergic effects. We report the in-water synthesis of a novel keratin-based nanoformulation for the co-delivery of the antimitotic Docetaxel (DTX) and the photosensitizer Chlorin e6 (Ce6). The drug-induced aggregation method allowed the formation of monodisperse NPs (DTX/Ce6-KNPs) with an average diameter of 133 nm and loaded with a drug ratio of 1:1.8 of Ce6 vs DTX. The efficacy of DTX/Ce6-KNPs was investigated in vitro in monolayers and spheroids of DTX-sensitive HeLa (HeLa-P) and DTX-resistant HeLa (HeLa-R) cells. In monolayers, the cytotoxic effects of DTX/Ce6-KNPs toward HeLa-P cells were comparable to those induced by free DTX + Ce6, while in HeLa-R cells the drug co-loading in KNPs produced synergic interaction between chemotherapy and PDT. Moreover, as respect to monotherapies, DTX/Ce6-KNPs induced stronger cytotoxicity to both HeLa-P and HeLa-R multicellular spheroids and reduced their volumes up to 50%. Overall, the results suggest that KNPs are very promising systems for the co-delivery of chemotherapeutics and PSs, favoring synergic interactions between PDT and chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Docetaxel/farmacologia , Portadores de Fármacos/química , Queratinas/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Porfirinas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Materiais Biocompatíveis/química , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Clorofilídeos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Células HeLa , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Esferoides Celulares/efeitos dos fármacos
20.
Exp Mol Med ; 51(8): 1-17, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375660

RESUMO

Type-2 Familial Partial Lipodystrophy is caused by LMNA mutations. Patients gradually lose subcutaneous fat from the limbs, while they accumulate adipose tissue in the face and neck. Several studies have demonstrated that autophagy is involved in the regulation of adipocyte differentiation and the maintenance of the balance between white and brown adipose tissue. We identified deregulation of autophagy in laminopathic preadipocytes before induction of differentiation. Moreover, in differentiating white adipocyte precursors, we observed impairment of large lipid droplet formation, altered regulation of adipose tissue genes, and expression of the brown adipose tissue marker UCP1. Conversely, in lipodystrophic brown adipocyte precursors induced to differentiate, we noticed activation of autophagy, formation of enlarged lipid droplets typical of white adipocytes, and dysregulation of brown adipose tissue genes. In agreement with these in vitro results indicating conversion of FPLD2 brown preadipocytes toward the white lineage, adipose tissue from FPLD2 patient neck, an area of brown adipogenesis, showed a white phenotype reminiscent of its brown origin. Moreover, in vivo morpho-functional evaluation of fat depots in the neck area of three FPLD2 patients by PET/CT analysis with cold stimulation showed the absence of brown adipose tissue activity. These findings highlight a new pathogenetic mechanism leading to improper fat distribution in lamin A-linked lipodystrophies and show that both impaired white adipocyte turnover and failure of adipose tissue browning contribute to disease.


Assuntos
Adipócitos Marrons/fisiologia , Adipócitos/patologia , Autofagia/fisiologia , Diferenciação Celular , Transdiferenciação Celular , Lipodistrofia Parcial Familiar/patologia , Adipócitos/fisiologia , Adipogenia/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiologia , Adulto , Transdiferenciação Celular/fisiologia , Células Cultivadas , Feminino , Humanos , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/fisiopatologia , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA