Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Adv Mater ; : e2401534, 2024 May 25.
Artigo em Holandês | MEDLINE | ID: mdl-38795019

RESUMO

The exploration of 1D magnetism, frequently portrayed as spin chains, constitutes an actively pursued research field that illuminates fundamental principles in many-body problems and applications in magnonics and spintronics. The inherent reduction in dimensionality often leads to robust spin fluctuations, impacting magnetic ordering and resulting in novel magnetic phenomena. Here, structural, magnetic, and optical properties of highly anisotropic 2D van der Waals antiferromagnets that uniquely host spin chains are explored. First-principle calculations reveal that the weakest interaction is interchain, leading to essentially 1D magnetic behavior in each layer. With the additional degree of freedom arising from its anisotropic structure, the structure is engineered by alloying, varying the 1D spin chain lengths using electron beam irradiation, or twisting for localized patterning, and spin textures are calculated, predicting robust stability of the antiferromagnetic ordering. Comparing with other spin chain magnets, these materials are anticipated to bring fresh perspectives on harvesting low-dimensional magnetism.

2.
Phys Rev Lett ; 132(6): 066004, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394564

RESUMO

We have investigated the 3d orbital excitations in CaCuO_{2} (CCO), Nd_{2}CuO_{4} (NCO), and La_{2}CuO_{4} (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the d_{xy} orbital clearly disperses, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen. We ascribe the origin of the dispersion as stemming from a substantial next-nearest-neighbor (NNN) orbital superexchange. Such an exchange leads to the liberation of the orbiton from its coupling to magnons, which is associated with the orbiton hopping between nearest neighbor copper sites. Finally, we show that the exceptionally large NNN orbital superexchange can be traced back to the absence of apical oxygens suppressing the charge transfer energy.

3.
Adv Mater ; 36(3): e2307515, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37830432

RESUMO

The omnipresence of charge density waves (CDWs) across almost all cuprate families underpins a common organizing principle. However, a longstanding debate of whether its spatial symmetry is stripe or checkerboard remains unresolved. While CDWs in lanthanum- and yttrium-based cuprates possess a stripe symmetry, distinguishing these two scenarios is challenging for the short-range CDW in bismuth-based cuprates. Here, high-resolution resonant inelastic x-ray scattering is employed to uncover the spatial symmetry of the CDW in Bi2 Sr2 - x Lax CuO6 + δ . Across a wide range of doping and temperature, anisotropic CDW peaks with elliptical shapes are found in reciprocal space. Based on Fourier transform analysis of real-space models, the results are interpreted as evidence of unidirectional charge stripes, hosted by mutually 90°-rotated anisotropic domains. This work paves the way for a unified symmetry and microscopic description of CDW order in cuprates.

4.
Nature ; 623(7986): 301-306, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938707

RESUMO

Electronic flat-band materials host quantum states characterized by a quenched kinetic energy. These flat bands are often conducive to enhanced electron correlation effects and emergent quantum phases of matter1. Long studied in theoretical models2-4, these systems have received renewed interest after their experimental realization in van der Waals heterostructures5,6 and quasi-two-dimensional (2D) crystalline materials7,8. An outstanding experimental question is if such flat bands can be realized in three-dimensional (3D) networks, potentially enabling new materials platforms9,10 and phenomena11-13. Here we investigate the C15 Laves phase metal CaNi2, which contains a nickel pyrochlore lattice predicted at a model network level to host a doubly-degenerate, topological flat band arising from 3D destructive interference of electronic hopping14,15. Using angle-resolved photoemission spectroscopy, we observe a band with vanishing dispersion across the full 3D Brillouin zone that we identify with the pyrochlore flat band as well as two additional flat bands that we show arise from multi-orbital interference of Ni d-electrons. Furthermore, we demonstrate chemical tuning of the flat-band manifold to the Fermi level that coincides with enhanced electronic correlations and the appearance of superconductivity. Extending the notion of intrinsic band flatness from 2D to 3D, this provides a potential pathway to correlated behaviour predicted for higher-dimensional flat-band systems ranging from tunable topological15 to fractionalized phases16.

5.
Proc Natl Acad Sci U S A ; 120(30): e2302099120, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459539

RESUMO

Copper oxide superconductors universally exhibit multiple forms of electronically ordered phases that break the native translational symmetry of the CuO2 planes. In underdoped cuprates with correlated metallic ground states, charge/spin stripes and incommensurate charge density waves (CDWs) have been experimentally observed over the years, while early theoretical studies also predicted the emergence of a Coulomb-frustrated 'charge crystal' phase in the very lightly doped, insulating limit of CuO2 planes. Here, we search for signatures of CDW order in very lightly hole-doped cuprates from the 123 family RBa2Cu3O7 - δ (RBCO; R: Y or rare earth), by using resonant X-ray scattering, electron transport, and muon spin rotation measurements to resolve the electronic and magnetic ground states fully. Specifically, Pr is used to substitute Y at the R-site to systematically suppress the superconductivity and access the extremely low hole-doping regime of the cuprate phase diagram without changing the oxygen stoichiometry. X-ray scattering data taken on Pr-doped YBCO thin films reveal an in-plane CDW order that follows the same linear evolution of wave vector versus hole concentration as oxygen-underdoped YBCO but extends all the way to the insulating and magnetically ordered Mott limit. Combined with the recent observation of charge crystal phase on an insulating surface of Bi2Sr2CaCu2O8 + z, our results in RBCO suggest that this electronic symmetry breaking is universally present in very lightly doped CuO2 planes. These findings bridge the gap between the Mott insulating state and the underdoped metallic state and underscore the prominent role that Coulomb-frustrated electronic phase separation plays among all cuprates.

7.
Nat Nanotechnol ; 18(10): 1147-1153, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37322144

RESUMO

Moiré superlattices of two-dimensional heterostructures arose as a new platform to investigate emergent behaviour in quantum solids with unprecedented tunability. To glean insights into the physics of these systems, it is paramount to discover new probes of the moiré potential and moiré minibands, as well as their dependence on external tuning parameters. Hydrostatic pressure is a powerful control parameter, since it allows to continuously and reversibly enhance the moiré potential. Here we use high pressure to tune the minibands in a rotationally aligned MoS2/WSe2 moiré heterostructure, and show that their evolution can be probed via moiré phonons. The latter are Raman-inactive phonons from the individual layers that are activated by the moiré potential. Moiré phonons manifest themselves as satellite Raman peaks arising exclusively from the heterostructure region, increasing in intensity and frequency under applied pressure. Further theoretical analysis reveals that their scattering rate is directly connected to the moiré potential strength. By comparing the experimental and calculated pressure-induced enhancement, we obtain numerical estimates for the moiré potential amplitude and its pressure dependence. The present work establishes moiré phonons as a sensitive probe of the moiré potential as well as the electronic structures of moiré systems.

8.
Phys Rev Lett ; 130(22): 220602, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37327421

RESUMO

The microscopic description of 1/f magnetic flux noise in superconducting circuits has remained an open question for several decades despite extensive experimental and theoretical investigation. Recent progress in superconducting devices for quantum information has highlighted the need to mitigate sources of qubit decoherence, driving a renewed interest in understanding the underlying noise mechanism(s). Though a consensus has emerged attributing flux noise to surface spins, their identity and interaction mechanisms remain unclear, prompting further study. Here, we apply weak in-plane magnetic fields to a capacitively shunted flux qubit (where the Zeeman splitting of surface spins lies below the device temperature) and study the flux-noise-limited qubit dephasing, revealing previously unexplored trends that may shed light on the dynamics behind the emergent 1/f noise. Notably, we observe an enhancement (suppression) of the spin-echo (Ramsey) pure-dephasing time in fields up to B=100 G. With direct noise spectroscopy, we further observe a transition from a 1/f to approximately Lorentzian frequency dependence below 10 Hz and a reduction of the noise above 1 MHz with increasing magnetic field. We suggest that these trends are qualitatively consistent with an increase of spin cluster sizes with magnetic field. These results should help to inform a complete microscopic theory of 1/f flux noise in superconducting circuits.


Assuntos
Campos Magnéticos , Temperatura
9.
Nat Mater ; 22(8): 985-991, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37349393

RESUMO

The origin of nematicity in FeSe remains a critical outstanding question towards understanding unconventional superconductivity in proximity to nematic order. To understand what drives the nematicity, it is essential to determine which electronic degree of freedom admits a spontaneous order parameter independent from the structural distortion. Here we use X-ray linear dichroism at the Fe K pre-edge to measure the anisotropy of the 3d orbital occupation as a function of in situ applied stress and temperature across the nematic transition. Along with using X-ray diffraction to precisely quantify the strain state, we reveal a lattice-independent, spontaneously ordered orbital polarization within the nematic phase, as well as an orbital polarizability that diverges as the transition is approached from above. These results provide strong evidence that spontaneous orbital polarization serves as the primary order parameter of the nematic phase.

10.
Small ; 19(30): e2300824, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37060220

RESUMO

Complex oxide films stabilized by epitaxial growth can exhibit large populations of point defects which have important effects on their properties. The site occupancy of pulsed laser-deposited epitaxial terbium iron garnet (TbIG) films with excess terbium (Tb) is analyzed, in which the terbium:iron (Tb:Fe)ratio is 0.86 compared to the stoichiometric value of 0.6. The magnetic properties of the TbIG are sensitive to site occupancy, exhibiting a higher compensation temperature (by 90 K) and a lower Curie temperature (by 40 K) than the bulk Tb3 Fe5 O12 garnet. Data derived from X-ray core-level spectroscopy, magnetometry, and molecular field coefficient modeling are consistent with occupancy of the dodecahedral sites by Tb3+ , the octahedral sites by Fe3+ , Tb3+ and vacancies, and the tetrahedral sites by Fe3+ and vacancies. Energy dispersive X-ray spectroscopy in a scanning transmission electron microscope provides direct evidence of TbFe antisites. A small fraction of Fe2+ is present, and oxygen vacancies are inferred to be present to maintain charge neutrality. Variation of the site occupancies provides a path to considerable manipulation of the magnetic properties of epitaxial iron garnet films and other complex oxides, which readily accommodate stoichiometries not found in their bulk counterparts.

11.
Nat Mater ; 22(2): 186-193, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36329264

RESUMO

In the kagome metals AV3Sb5 (A = K, Rb, Cs), three-dimensional charge order is the primary instability that sets the stage for other collective orders to emerge, including unidirectional stripe order, orbital flux order, electronic nematicity and superconductivity. Here, we use high-resolution angle-resolved photoemission spectroscopy to determine the microscopic structure of three-dimensional charge order in AV3Sb5 and its interplay with superconductivity. Our approach is based on identifying an unusual splitting of kagome bands induced by three-dimensional charge order, which provides a sensitive way to refine the spatial charge patterns in neighbouring kagome planes. We found a marked dependence of the three-dimensional charge order structure on composition and doping. The observed difference between CsV3Sb5 and the other compounds potentially underpins the double-dome superconductivity in CsV3(Sb,Sn)5 and the suppression of Tc in KV3Sb5 and RbV3Sb5. Our results provide fresh insights into the rich phase diagram of AV3Sb5.

12.
IUCrJ ; 9(Pt 5): 705-712, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36071796

RESUMO

Structural modelling of octahedral tilts in perovskites is typically carried out using the symmetry constraints of the resulting space group. In most cases, this introduces more degrees of freedom than those strictly necessary to describe only the octahedral tilts. It can therefore be a challenge to disentangle the octahedral tilts from other structural distortions such as cation displacements and octahedral distortions. This paper reports the development of constraints for modelling pure octahedral tilts and implementation of the constraints in diffpy-CMI, a powerful package to analyse pair distribution function (PDF) data. The model in the program allows features in the PDF that come from rigid tilts to be separated from non-rigid relaxations, providing an intuitive picture of the tilting. The model has many fewer refinable variables than the unconstrained space group fits and provides robust and stable refinements of the tilt components. It further demonstrates the use of the model on the canonical tilted perovskite CaTiO3 which has the known Glazer tilt system α+ß-ß-. The Glazer model fits comparably to the corresponding space-group model Pnma below r = 14 Šand becomes progressively worse than the space-group model at higher r due to non-rigid distortions in the real material.

13.
Nano Lett ; 22(15): 6149-6155, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867517

RESUMO

We perform magnetotransport experiments on VI3 multilayers to investigate the relation between ferromagnetism in bulk and in exfoliated layers. The magnetoconductance measured on field-effect transistors and tunnel barriers shows that the Curie temperature of exfoliated multilayers is TC = 57 K, larger than in bulk (TC,bulk = 50 K). Below T ≈ 40 K, we observe an unusual evolution of the tunneling magnetoconductance, analogous to the phenomenology observed in bulk. Comparing the magnetoconductance measured for fields applied in- or out-of-plane corroborates the analogy, allows us to determine that the orientation of the easy-axis in multilayers is similar to that in bulk, and suggests that the in-plane component of the magnetization points in different directions in different layers. Besides establishing that the magnetic state of bulk and multilayers are similar, our experiments illustrate the complementarity of magnetotransport and magneto-optical measurements to probe magnetism in 2D materials.

14.
ACS Nano ; 16(5): 8064-8075, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35466673

RESUMO

Transition metal dichalcogenides (TMDs) possess spin-valley locking and spin-split K/K' valleys, which have led to many fascinating physical phenomena. However, the electronic structure of TMDs also exhibits other conduction band minima with similar properties, the Q/Q' valleys. The intervalley K-Q scattering enables interesting physical phenomena, including multivalley superconductivity, but those effects are typically hindered in monolayer TMDs due to the large K-Q energy difference (ΔEKQ). To unlock elusive multivalley phenomena in monolayer TMDs, it is desirable to reduce ΔEKQ, while being able to sensitively probe the valley shifts and the multivalley scattering processes. Here, we use high pressure to tune the electronic properties of monolayer MoS2 and WSe2 and probe K-Q crossing and multivalley scattering via double-resonance Raman (DRR) scattering. In both systems, we observed a pressure-induced enhancement of the double-resonance LA and 2LA Raman bands, which can be attributed to a band gap opening and ΔEKQ decrease. First-principles calculations and photoluminescence measurements corroborate this scenario. In our analysis, we also addressed the multivalley nature of the DRR bands for WSe2. Our work establishes the DRR 2LA and LA bands as sensitive probes of strain-induced modifications to the electronic structure of TMDs. Conversely, their intensity could potentially be used to monitor the presence of compressive or tensile strain in TMDs. Furthermore, the ability to probe K-K' and K-Q scattering as a function of strain shall advance our understanding of different multivalley phenomena in TMDs such as superconductivity, valley coherence, and valley transport.

15.
Opt Lett ; 47(9): 2322-2325, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486790

RESUMO

Lensless imaging methods that account for partial coherence have become very common in the past decade. However, there are no metrics in use for comparing partially coherent light fields, despite the widespread use of such metrics to compare fully coherent objects and wave fields. Here, we show how reformulating the mean squared error and Fourier ring correlation in terms of quantum state fidelity naturally generalizes them to partially coherent wave fields. These results fill an important gap in the lensless imaging literature and will enable quantitative assessments of the reliability and resolution of reconstructed partially coherent wave fields.

16.
Opt Express ; 30(2): 2247-2264, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209369

RESUMO

Randomized probe imaging (RPI) is a single-frame diffractive imaging method that uses highly randomized light to reconstruct the spatial features of a scattering object. The reconstruction process, known as phase retrieval, aims to recover a unique solution for the object without measuring the far-field phase information. Typically, reconstruction is done via time-consuming iterative algorithms. In this work, we propose a fast and efficient deep learning based method to reconstruct phase objects from RPI data. The method, which we call deep k-learning, applies the physical propagation operator to generate an approximation of the object as an input to the neural network. This way, the network no longer needs to parametrize the far-field diffraction physics, dramatically improving the results. Deep k-learning is shown to be computationally efficient and robust to Poisson noise. The advantages provided by our method may enable the analysis of far larger datasets in photon starved conditions, with important applications to the study of dynamic phenomena in physical science and biological engineering.

17.
Nature ; 602(7898): 601-605, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35197619

RESUMO

Multiferroic materials have attracted wide interest because of their exceptional static1-3 and dynamical4-6 magnetoelectric properties. In particular, type-II multiferroics exhibit an inversion-symmetry-breaking magnetic order that directly induces ferroelectric polarization through various mechanisms, such as the spin-current or the inverse Dzyaloshinskii-Moriya effect3,7. This intrinsic coupling between the magnetic and dipolar order parameters results in high-strength magnetoelectric effects3,8. Two-dimensional materials possessing such intrinsic multiferroic properties have been long sought for to enable the harnessing of magnetoelectric coupling in nanoelectronic devices1,9,10. Here we report the discovery of type-II multiferroic order in a single atomic layer of the transition-metal-based van der Waals material NiI2. The multiferroic state of NiI2 is characterized by a proper-screw spin helix with given handedness, which couples to the charge degrees of freedom to produce a chirality-controlled electrical polarization. We use circular dichroic Raman measurements to directly probe the magneto-chiral ground state and its electromagnon modes originating from dynamic magnetoelectric coupling. Combining birefringence and second-harmonic-generation measurements with theoretical modelling and simulations, we detect a highly anisotropic electronic state that simultaneously breaks three-fold rotational and inversion symmetry, and supports polar order. The evolution of the optical signatures as a function of temperature and layer number surprisingly reveals an ordered magnetic polar state that persists down to the ultrathin limit of monolayer NiI2. These observations establish NiI2 and transition metal dihalides as a new platform for studying emergent multiferroic phenomena, chiral magnetic textures and ferroelectricity in the two-dimensional limit.

18.
Opt Express ; 30(1): 403-413, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35201217

RESUMO

Fourier transform holography is a lensless imaging technique that retrieves an object's exit-wave function with high fidelity. It has been used to study nanoscale phenomena and spatio-temporal dynamics in solids, with sensitivity to the phase component of electronic and magnetic textures. However, the method requires an invasive and labor-intensive nanopatterning of a holography mask directly onto the sample, which can alter the sample properties, forces a fixed field-of-view, and leads to a low signal-to-noise ratio at high resolution. In this work, we propose using wavefront-shaping diffractive optics to create a structured probe with full control of its phase at the sample plane, circumventing the need for a mask. We demonstrate in silico that the method can image nanostructures and magnetic textures and validate our approach with a visible light-based experiment. The method enables investigation of a plethora of phenomena at the nanoscale including magnetic and electronic phase coexistence in solids, with further uses in soft and biological matter research.

20.
Nat Commun ; 12(1): 3122, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035254

RESUMO

In ultrathin films of FeSe grown on SrTiO3 (FeSe/STO), the superconducting transition temperature Tc is increased by almost an order of magnitude, raising questions on the pairing mechanism. As in other superconductors, antiferromagnetic spin fluctuations have been proposed to mediate SC making it essential to study the evolution of the spin dynamics of FeSe from the bulk to the ultrathin limit. Here, we investigate the spin excitations in bulk and monolayer FeSe/STO using resonant inelastic x-ray scattering (RIXS) and quantum Monte Carlo (QMC) calculations. Despite the absence of long-range magnetic order, bulk FeSe displays dispersive magnetic excitations reminiscent of other Fe-pnictides. Conversely, the spin excitations in FeSe/STO are gapped, dispersionless, and significantly hardened relative to its bulk counterpart. By comparing our RIXS results with simulations of a bilayer Hubbard model, we connect the evolution of the spin excitations to the Fermiology of the two systems revealing a remarkable reconfiguration of spin excitations in FeSe/STO, essential to understand the role of spin fluctuations in the pairing mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA