Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Funct Imaging Model Heart ; 9126: 57-64, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27976753

RESUMO

Cardiac motion analysis, particularly of the left ventricle (LV), can provide valuable information regarding the functional state of the heart. We propose a strategy of combining shape tracking and speckle tracking based displacements to calculate the dense deformation field of the myocardium. We introduce the use and effects of l1 regularization, which induces sparsity, in our integration method. We also introduce regularization to make the dense fields more adhering to cardiac biomechanics. Finally, we motivate the necessity of temporal coherence in the dense fields and demonstrate a way of doing so. We test our method on ultrasound (US) images acquired from six open-chested canine hearts. Baseline and post-occlusion strain results are presented for an animal, where we were able to detect significant change in the ischemic region. Six sets of strain results were also compared to strains obtained from tagged magnetic resonance (MR) data. Median correlation (with MR-tagging) coefficients of 0.73 and 0.82 were obtained for radial and circumferential strains respectively.

3.
IEEE Trans Med Imaging ; 33(6): 1275-89, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24893257

RESUMO

Quantitative analysis of left ventricular deformation can provide valuable information about the extent of disease as well as the efficacy of treatment. In this work, we develop an adaptive multi-level compactly supported radial basis approach for deformation analysis in 3D+time echocardiography. Our method combines displacement information from shape tracking of myocardial boundaries (derived from B-mode data) with mid-wall displacements from radio-frequency-based ultrasound speckle tracking. We evaluate our methods on open-chest canines (N=8) and show that our combined approach is better correlated to magnetic resonance tagging-derived strains than either individual method. We also are able to identify regions of myocardial infarction (confirmed by postmortem analysis) using radial strain values obtained with our approach.


Assuntos
Ecocardiografia Quadridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Animais , Cães , Masculino , Movimento , Infarto do Miocárdio , Miocárdio/patologia
4.
Med Image Anal ; 18(2): 253-71, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24292554

RESUMO

This paper presents a dynamical appearance model based on sparse representation and dictionary learning for tracking both endocardial and epicardial contours of the left ventricle in echocardiographic sequences. Instead of learning offline spatiotemporal priors from databases, we exploit the inherent spatiotemporal coherence of individual data to constraint cardiac contour estimation. The contour tracker is initialized with a manual tracing of the first frame. It employs multiscale sparse representation of local image appearance and learns online multiscale appearance dictionaries in a boosting framework as the image sequence is segmented frame-by-frame sequentially. The weights of multiscale appearance dictionaries are optimized automatically. Our region-based level set segmentation integrates a spectrum of complementary multilevel information including intensity, multiscale local appearance, and dynamical shape prediction. The approach is validated on twenty-six 4D canine echocardiographic images acquired from both healthy and post-infarct canines. The segmentation results agree well with expert manual tracings. The ejection fraction estimates also show good agreement with manual results. Advantages of our approach are demonstrated by comparisons with a conventional pure intensity model, a registration-based contour tracker, and a state-of-the-art database-dependent offline dynamical shape model. We also demonstrate the feasibility of clinical application by applying the method to four 4D human data sets.


Assuntos
Ecocardiografia/métodos , Ventrículos do Coração/diagnóstico por imagem , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Infarto do Miocárdio/diagnóstico por imagem , Algoritmos , Animais , Artefatos , Cães , Endocárdio/diagnóstico por imagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Artigo em Inglês | MEDLINE | ID: mdl-23286114

RESUMO

The spatio-temporal coherence in data plays an important role in echocardiographic segmentation. While learning offline dynamical priors from databases has received considerable attention, these priors may not be suitable for post-infarct patients and children with congenital heart disease. This paper presents a dynamical appearance model (DAM) driven by individual inherent data coherence. It employs multi-scale sparse representation of local appearance, learns online multiscale appearance dictionaries as the image sequence is segmented sequentially, and integrates a spectrum of complementary multiscale appearance information including intensity, multiscale local appearance, and dynamical shape predictions. It overcomes the limitations of database-driven statistical models and applies to a broader range of subjects. Results on 26 4D canine echocardiographic images acquired from both healthy and post-infarct subjects show that our method significantly improves segmentation accuracy and robustness compared to a conventional intensity model and our previous single-scale sparse representation method.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca/métodos , Ecocardiografia Tridimensional/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Cardiovasculares , Disfunção Ventricular Esquerda/diagnóstico por imagem , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA