Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
2.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38508712

RESUMO

The mammalian hippocampus exhibits spontaneous sharp wave events (1-30 Hz) with an often-present superimposed fast ripple oscillation (120-220 Hz) to form a sharp wave ripple (SWR) complex. During slow-wave sleep or quiet restfulness, SWRs result from the sequential spiking of hippocampal cell assemblies initially activated during learned or imagined experiences. Additional cortical/subcortical areas exhibit SWR events that are coupled to hippocampal SWRs, and studies in mammals suggest that coupling may be critical for the consolidation and recall of specific memories. In the present study, we have examined juvenile male and female zebrafish and show that SWR events are intrinsically generated and maintained within the telencephalon and that their hippocampal homolog, the anterodorsolateral lobe (ADL), exhibits SW events with ∼9% containing an embedded ripple (SWR). Single-cell calcium imaging coupled to local field potential recordings revealed that ∼10% of active cells in the dorsal telencephalon participate in any given SW event. Furthermore, fluctuations in cholinergic tone modulate SW events consistent with mammalian studies. Moreover, the basolateral amygdala (BLA) homolog exhibits SW events with ∼5% containing an embedded ripple. Computing the SW peak coincidence difference between the ADL and BLA showed bidirectional communication. Simultaneous coupling occurred more frequently within the same hemisphere, and in coupled events across hemispheres, the ADL more commonly preceded BLA. Together, these data suggest conserved mechanisms across species by which SW and SWR events are modulated, and memories may be transferred and consolidated through regional coupling.


Assuntos
Hipocampo , Peixe-Zebra , Animais , Masculino , Hipocampo/fisiologia , Feminino , Tonsila do Cerebelo/fisiologia , Potenciais de Ação/fisiologia , Ondas Encefálicas/fisiologia
3.
J Neurochem ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163875

RESUMO

Resveratrol, a naturally occurring polyphenol that activates sirtuin 1 (SIRT1), has been shown to reduce overall levels of matrix metalloprotease-9 (MMP-9) in cerebrospinal fluid (CSF) samples from patients with Alzheimer's dementia (AD). Depending on the site of release, however, MMP-9 has the potential to improve or impair cognition. In particular, its release from microglia or pericytes proximal to the blood brain barrier can damage the basement membrane, while neuronal activity-dependent release of this protease from glutamatergic neurons can instead promote dendritic spine expansion and long-term potentiation of synaptic plasticity. In the present study, we test the hypothesis that resveratrol reduces overall MMP-9 levels in CSF samples from patients with APOE4, an allele associated with increased glial inflammation. We also examine the possibility that resveratrol reduces inflammation-associated MMP release from cultured glia but spares neuronal activity-dependent release from cultured cortical neurons. We observe that resveratrol decreases overall levels of MMP-2 and MMP-9 in CSF samples from AD patients. Resveratrol also reduces CSF levels of tissue inhibitor of metalloproteinases-1 (TIMP-1), glial-derived protein that restricts long-term potentiation of synaptic transmission, in individuals homozygous for APOE4. Consistent with these results, we observe that resveratrol reduces basal and lipopolysaccharide (LPS)-stimulated MMP and TIMP-1 release from cultured microglia and astrocytes. In contrast, however, resveratrol does not inhibit release of MMP-9 from cortical neurons. Overall, these results are consistent with the possibility that while resveratrol reduces potentially maladaptive MMP and TIMP-1 release from activated glia, neuroplasticity-promoting MMP release from neurons is spared. In contrast, resveratrol reduces release of neurocan and brevican, extracellular matrix components that restrict neuroplasticity, from both neurons and glia. These data underscore the diversity of resveratrol's actions with respect to affected cell types and molecular targets and also suggest that further studies may be warranted to determine if its effects on glial MMP release could make it a useful adjunct for AD- and/or anti-amyloid therapy-related damage to the blood brain barrier.

4.
Front Neurosci ; 17: 1188065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304012

RESUMO

Alzheimer's Disease (AD) and related dementias are a leading cause of death globally and are predicted to increase in prevalence. Despite this expected increase in the prevalence of AD, we have yet to elucidate the causality of the neurodegeneration observed in AD and we lack effective therapeutics to combat the progressive neuronal loss. Throughout the past 30 years, several non-mutually exclusive hypotheses have arisen to explain the causative pathologies in AD: amyloid cascade, hyper-phosphorylated tau accumulation, cholinergic loss, chronic neuroinflammation, oxidative stress, and mitochondrial and cerebrovascular dysfunction. Published studies in this field have also focused on changes in neuronal extracellular matrix (ECM), which is critical to synaptic formation, function, and stability. Two of the greatest non-modifiable risk factors for development of AD (aside from autosomal dominant familial AD gene mutations) are aging and APOE status, and two of the greatest modifiable risk factors for AD and related dementias are untreated major depressive disorder (MDD) and obesity. Indeed, the risk of developing AD doubles for every 5 years after ≥ 65, and the APOE4 allele increases AD risk with the greatest risk in homozygous APOE4 carriers. In this review, we will describe mechanisms by which excess ECM accumulation may contribute to AD pathology and discuss pathological ECM alterations that occur in AD as well as conditions that increase the AD risk. We will discuss the relationship of AD risk factors to chronic central nervous system and peripheral inflammation and detail ECM changes that may follow. In addition, we will discuss recent data our lab has obtained on ECM components and effectors in APOE4/4 and APOE3/3 expressing murine brain lysates, as well as human cerebrospinal fluid (CSF) samples from APOE3 and APOE4 expressing AD individuals. We will describe the principal molecules that function in ECM turnover as well as abnormalities in these molecular systems that have been observed in AD. Finally, we will communicate therapeutic interventions that have the potential to modulate ECM deposition and turnover in vivo.

5.
Neurobiol Dis ; 179: 106057, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36878326

RESUMO

The APOE4 allele increases the risk for Alzheimer's disease (AD) in a dose-dependent manner and is also associated with cognitive decline in non-demented elderly controls. In mice with targeted gene replacement (TR) of murine APOE with human APOE3 or APOE4, the latter show reduced neuronal dendritic complexity and impaired learning. APOE4 TR mice also show reduced gamma oscillation power, a neuronal population activity which is important to learning and memory. Published work has shown that brain extracellular matrix (ECM) can reduce neuroplasticity as well as gamma power, while attenuation of ECM can instead enhance this endpoint. In the present study we examine human cerebrospinal fluid (CSF) samples from APOE3 and APOE4 individuals and brain lysates from APOE3 and APOE4 TR mice for levels of ECM effectors that can increase matrix deposition and restrict neuroplasticity. We find that CCL5, a molecule linked to ECM deposition in liver and kidney, is increased in CSF samples from APOE4 individuals. Levels of tissue inhibitor of metalloproteinases (TIMPs), which inhibit the activity of ECM-degrading enzymes, are also increased in APOE4 CSF as well as astrocyte supernatants brain lysates from APOE4 TR mice. Importantly, as compared to APOE4/wild-type heterozygotes, APOE4/CCR5 knockout heterozygotes show reduced TIMP levels and enhanced EEG gamma power. The latter also show improved learning and memory, suggesting that the CCR5/CCL5 axis could represent a therapeutic target for APOE4 individuals.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Camundongos , Humanos , Animais , Idoso , Apolipoproteína E4/genética , Memória de Curto Prazo , Apolipoproteína E3/genética , Camundongos Transgênicos , Doença de Alzheimer/genética , Apolipoproteínas E/genética , Receptores CCR5
7.
Behav Brain Res ; 408: 113288, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33836170

RESUMO

Increased perineuronal net (PNN) deposition has been observed in association with corticosteroid administration and stress in rodent models of depression. PNNs are a specialized form of extracellular matrix (ECM) that may enhance GABA-mediated inhibitory neurotransmission to potentially restrict the excitation and plasticity of pyramidal glutamatergic neurons. In contrast, antidepressant administration increases levels of the PNN-degrading enzyme matrix metalloproteinase-9 (MMP-9), which enhances glutamatergic plasticity and neurotransmission. In the present study, we compare pro-MMP-9 levels and measures of stress in females from two mouse strains, C57BL/6 J and BALB/cJ, in the presence or absence of tail grasping versus tunnel-associated cage transfers. Prior work suggests that C57BL/6 J mice show relatively enhanced neuroplasticity and stress resilience, while BALB/c mice demonstrate enhanced susceptibility to adverse effects of stress. Herein we observe that as compared to the C57BL/6 J strain, BALB/c mice demonstrate a higher level of baseline anxiety as determined by elevated plus maze (EPM) testing. Moreover, as determined by open field testing, anxiety is differentially reduced in BALB/c mice by a choice-driven tunnel-entry cage transfer technique. Additionally, as compared to tail-handled C57BL/6 J mice, tail-handled BALB/c mice have reduced brain levels of pro-MMP-9 and increased levels of its endogenous inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1); however, tunnel-associated cage transfer increases pro-MMP-9 levels in BALB/c mice. BALB/c mice also show increases in Western blot immunoreactive bands for brevican, a constituent of PNNs. Together, these data support the possibility that MMP-9, an effector of PNN remodeling, contributes to the phenotype of strain and handling-associated differences in behavior.


Assuntos
Comportamento Animal/fisiologia , Manobra Psicológica , Metaloproteinase 9 da Matriz/metabolismo , Resiliência Psicológica , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
8.
Eur J Neurosci ; 53(12): 3879-3888, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32673433

RESUMO

Emerging evidence suggests that extracellular matrix (ECM) alterations occur with stress. Specifically, increases in perineuronal net (PNN) deposition have been observed in rodents exposed to chronic corticosterone or persistent social defeat stress. The PNN is a specific form of ECM that is predominantly localized to parvalbumin (PV)-expressing inhibitory interneurons where it modulates neuronal excitability and brain oscillations that are influenced by the same. Consistent with a role for ECM changes in contributing to the depressive phenotype, recent studies have demonstrated that monoamine reuptake inhibitor type antidepressants can reduce PNN deposition, improve behavior and stimulate changes in gamma oscillatory power that may be important to mood and memory. The present review will highlight studies in humans, rodents and zebrafish that have examined stress, PNN deposition and/or gamma oscillations with a focus on potential cellular and molecular underpinnings.


Assuntos
Depressão , Matriz Extracelular , Estresse Psicológico/fisiopatologia , Animais , Depressão/fisiopatologia , Humanos , Interneurônios , Parvalbuminas , Roedores , Peixe-Zebra
9.
J Neurosci ; 40(26): 5116-5136, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32439703

RESUMO

Memory disruption in mild cognitive impairment (MCI) and Alzheimer's disease (AD) is poorly understood, particularly at early stages preceding neurodegeneration. In mouse models of AD, there are disruptions to sharp wave ripples (SWRs), hippocampal population events with a critical role in memory consolidation. However, the microcircuitry underlying these disruptions is under-explored. We tested whether a selective reduction in parvalbumin-expressing (PV) inhibitory interneuron activity underlies hyperactivity and SWR disruption. We employed the 5xFAD model of familial AD crossed with mouse lines labeling excitatory pyramidal cells (PCs) and inhibitory PV cells. We observed a 33% increase in frequency, 58% increase in amplitude, and 8% decrease in duration of SWRs in ex vivo slices from male and female three-month 5xFAD mice versus littermate controls. 5xFAD mice of the same age were impaired in a hippocampal-dependent memory task. Concurrent with SWR recordings, we performed calcium imaging, cell-attached, and whole-cell recordings of PC and PV cells within the CA1 region. PCs in 5xFAD mice participated in enlarged ensembles, with superficial PCs (sPCs) having a higher probability of spiking during SWRs. Both deep PCs (dPCs) and sPCs displayed an increased synaptic E/I ratio, suggesting a disinhibitory mechanism. In contrast, we observed a 46% spike rate reduction during SWRs in PV basket cells (PVBCs), while PV bistratified and axo-axonic cells were unimpaired. Excitatory synaptic drive to PVBCs was selectively reduced by 50%, resulting in decreased E/I ratio. Considering prior studies of intrinsic PV cell dysfunction in AD, these findings suggest alterations to the PC-PVBC microcircuit also contribute to impairment.SIGNIFICANCE STATEMENT We demonstrate that a specific subtype of inhibitory neuron, parvalbumin-expressing (PV) basket cells, have selectively reduced activity in a model of Alzheimer's disease (AD) during activity critical for the consolidation of memory. These results identify a potential cellular target for therapeutic intervention to restore aberrant network activity in early amyloid pathology. While PV cells have previously been identified as a potential therapeutic target, this study for the first time recognizes that other PV neuronal subtypes, including bistratified and axo-axonic cells, are spared. These experiments are the first to record synaptic and spiking activity during sharp wave ripple (SWR) events in early amyloid pathology and reveal that a selective decrease in excitatory synaptic drive to PV basket cells (PVBCs) likely underlies reduced function.


Assuntos
Doença de Alzheimer/fisiopatologia , Hipocampo/fisiopatologia , Interneurônios/fisiologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Parvalbuminas/metabolismo , Células Piramidais/fisiologia
10.
J Neurosci ; 40(22): 4418-4431, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32269106

RESUMO

Emerging evidence suggests that there is a reduction in overall cortical excitatory to inhibitory balance in major depressive disorder (MDD), which afflicts ∼14%-20% of individuals. Reduced pyramidal cell arborization occurs with stress and MDD, and may diminish excitatory neurotransmission. Enhanced deposition of perineuronal net (PNN) components also occurs with stress. Since parvalbumin-expressing interneurons are the predominant cell population that is enveloped by PNNs, which enhance their ability to release GABA, excess PNN deposition likely increases pyramidal cell inhibition. In the present study, we investigate the potential for matrix metalloprotease-9 (MMP-9), an endopeptidase secreted in response to neuronal activity, to contribute to the antidepressant efficacy of the serotonin/norepinephrine reuptake inhibitor venlafaxine in male mice. Chronic venlafaxine increases MMP-9 levels in murine cortex, and increases both pyramidal cell arborization and PSD-95 expression in the cortex of WT but not MMP-9-null mice. We have previously shown that venlafaxine reduces PNN deposition and increases the power of ex vivo γ oscillations in conventionally housed mice. γ power is increased with pyramidal cell disinhibition and with remission from MDD. Herein we observe that PNN expression is increased in a corticosterone-induced stress model of disease and reduced by venlafaxine. Compared with mice that receive concurrent venlafaxine, corticosterone-treated mice also display reduced ex vivo γ power and impaired working memory. Autopsy-derived PFC samples show elevated MMP-9 levels in antidepressant-treated MDD patients compared with controls. These preclinical and postmortem findings highlight a link between extracellular matrix regulation and MDD.SIGNIFICANCE STATEMENT Reduced excitatory neurotransmission occurs with major depressive disorder, and may be normalized by antidepressant treatment. Underlying molecular mechanisms are, however, not well understood. Herein we investigate a potential role for an extracellular protease, released from neurons and known to play a role in learning and memory, in antidepressant-associated increases in excitatory transmission. Our data suggest that this protease, matrix metalloprotease-9, increases branching of excitatory neurons and concomitantly attenuates the perineuronal net to potentially reduce inhibitory input to these neurons. Matrix metalloprotease-9 may thus enhance overall excitatory/inhibitory balance and neuronal population dynamics, which are important to mood and memory.


Assuntos
Transtorno Depressivo Maior/tratamento farmacológico , Ritmo Gama , Metaloproteinase 9 da Matriz/metabolismo , Inibição Neural , Inibidores da Recaptação de Serotonina e Norepinefrina/farmacologia , Estresse Psicológico/complicações , Cloridrato de Venlafaxina/farmacologia , Adulto , Idoso , Animais , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Transtorno Depressivo Maior/etiologia , Feminino , Humanos , Masculino , Metaloproteinase 9 da Matriz/genética , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células Piramidais/metabolismo , Células Piramidais/patologia , Inibidores da Recaptação de Serotonina e Norepinefrina/uso terapêutico , Cloridrato de Venlafaxina/uso terapêutico
11.
Exp Neurol ; 323: 113077, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678140

RESUMO

HIV-associated neurocognitive disorders (HAND) continue to persist despite effective control of viral replication. Although the mechanisms underlying HAND are poorly understood, recent attention has focused on altered neuronal population activity as a correlate of impaired cognition. However, while alterations in neuronal population activity in the gamma frequency range are noted in the setting of HAND, the underlying mechanisms for these changes is unclear. Perineuronal nets (PNNs) are a specialized extracellular matrix that surrounds a subset of inhibitory neurons important to the expression of neuronal oscillatory activity. In the present study, we observe that levels of PNN-degrading matrix metalloproteinases (MMPs) are elevated in HIV-infected post-mortem human brain tissue. Furthermore, analysis of two PNN components, aggrecan and brevican, reveals increased proteolysis in HIV-infected brains. In addition, local field potential recordings from ex vivo mouse hippocampal slices demonstrate that the power of carbachol-induced gamma activity is increased following PNN degradation. Together, these results provide a possible mechanism whereby increased MMP proteolysis of PNNs may stimulate altered neuronal oscillatory activity and contribute to HAND symptoms.


Assuntos
Complexo AIDS Demência/metabolismo , Encéfalo/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinases da Matriz/metabolismo , Neurônios/metabolismo , Complexo AIDS Demência/patologia , Adulto , Agrecanas/metabolismo , Animais , Encéfalo/patologia , Brevicam/metabolismo , Feminino , Ritmo Gama/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neurônios/patologia , Proteólise
12.
Glia ; 67(9): 1719-1729, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31124192

RESUMO

The HIV-1 protein Tat is continually released by HIV-infected cells despite effective combination antiretroviral therapies (cART). Tat promotes neurotoxicity through enhanced expression of proinflammatory molecules from resident and infiltrating immune cells. These molecules include matrix metalloproteinases (MMPs), which are pathologically elevated in HIV, and are known to drive central nervous system (CNS) injury in varied disease settings. A subset of MMPs can activate G-protein coupled protease-activated receptor 1 (PAR-1), a receptor that is highly expressed on astrocytes. Although PAR-1 expression is increased in HIV-associated neurocognitive disorder (HAND), its role in HAND pathogenesis remains understudied. Herein, we explored Tat's ability to induce expression of the PAR-1 agonists MMP-3 and MMP-13. We also investigated MMP/PAR-1-mediated release of CCL2, a chemokine that drives CNS entry of HIV infected monocytes and remains a significant correlate of cognitive dysfunction in the era of cART. Tat exposure significantly increased the expression of MMP-3 and MMP-13. These PAR-1 agonists both stimulated the release of astrocytic CCL2, and both genetic knock-out and pharmacological inhibition of PAR-1 reduced CCL2 release. Moreover, in HIV-infected post-mortem brain tissue, within-sample analyses revealed a correlation between levels of PAR-1-activating MMPs, PAR-1, and CCL2. Collectively, these findings identify MMP/PAR-1 signaling to be involved in the release of CCL2, which may underlie Tat-induced neuroinflammation.


Assuntos
Astrócitos/metabolismo , Astrócitos/virologia , Quimiocina CCL2/metabolismo , Metaloproteinases da Matriz/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Adulto , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/virologia , Feminino , HIV-1 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
13.
Front Mol Neurosci ; 12: 117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133801

RESUMO

Major depressive disorder is a debilitating condition that affects approximately 15% of the United States population. Though the neurophysiological mechanisms that underlie this disorder are not completely understood, both human and rodent studies suggest that excitatory/inhibitory (E/I) balance is reduced with the depressive phenotype. In contrast, antidepressant efficacy in responsive individuals correlates with increased excitatory neurotransmission in select brain regions, suggesting that the restoration of E/I balance may improve mood. Enhanced excitatory transmission can occur through mechanisms including increased dendritic arborization and synapse formation in pyramidal neurons. Reduced activity of inhibitory neurons may also contribute to antidepressant efficacy. Consistent with this possibility, the fast-acting antidepressant ketamine may act by selective inhibition of glutamatergic input to GABA releasing parvalbumin (PV)-expressing interneurons. Recent work has also shown that a negative allosteric modulator of the GABA-A receptor α subunit can improve depression-related behavior. PV-expressing interneurons are thought to represent critical pacemakers for synchronous network events. These neurons also represent the predominant GABAergic neuronal population that is enveloped by the perineuronal net (PNN), a lattice-like structure that is thought to stabilize glutamatergic input to this cell type. Disruption of the PNN reduces PV excitability and increases pyramidal cell excitability. Various antidepressant medications increase the expression of matrix metalloproteinases (MMPs), enzymes that can increase pyramidal cell dendritic arborization and spine formation. MMPs can also cleave PNN proteins to reduce PV neuron-mediated inhibition. The present review will focus on mechanisms that may underlie antidepressant efficacy, with a focus on monoamines as facilitators of increased matrix metalloprotease (MMP) expression and activation. Discussion will include MMP-dependent effects on pyramidal cell structure and function, as well as MMP-dependent effects on PV expressing interneurons. We conclude with discussion of antidepressant use for those at risk for Alzheimer's disease, and we also highlight areas for further study.

14.
eNeuro ; 6(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058213

RESUMO

Microglia are in a privileged position to both affect and be affected by neuroinflammation, neuronal activity and injury, which are all hallmarks of seizures and the epilepsies. Hippocampal microglia become activated after prolonged, damaging seizures known as status epilepticus (SE). However, since SE causes both hyperactivity and injury of neurons, the mechanisms triggering this activation remain unclear, as does the relevance of the microglial activation to the ensuing epileptogenic processes. In this study, we use electroconvulsive shock (ECS) to study the effect of neuronal hyperactivity without neuronal degeneration on mouse hippocampal microglia. Unlike SE, ECS did not alter hippocampal CA1 microglial density, morphology, or baseline motility. In contrast, both ECS and SE produced a similar increase in ATP-directed microglial process motility in acute slices, and similarly upregulated expression of the chemokine C-C motif chemokine ligand 2 (CCL2). Whole-cell patch-clamp recordings of hippocampal CA1sr microglia showed that ECS enhanced purinergic currents mediated by P2X7 receptors in the absence of changes in passive properties or voltage-gated currents, or changes in receptor expression. This differs from previously described alterations in intrinsic characteristics which coincided with enhanced purinergic currents following SE. These ECS-induced effects point to a "seizure signature" in hippocampal microglia characterized by altered purinergic signaling. These data demonstrate that ictal activity per se can drive alterations in microglial physiology without neuronal injury. These physiological changes, which up until now have been associated with prolonged and damaging seizures, are of added interest as they may be relevant to electroconvulsive therapy (ECT), which remains a gold-standard treatment for depression.


Assuntos
Região CA1 Hipocampal , Movimento Celular/fisiologia , Eletrochoque , Inflamação , Microglia/fisiologia , Estado Epiléptico , Trifosfato de Adenosina/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiopatologia , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Feminino , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Camundongos , Microglia/metabolismo , Técnicas de Patch-Clamp , Receptores Purinérgicos P2X7/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatologia , Regulação para Cima
15.
J Neurochem ; 148(6): 810-821, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30697747

RESUMO

Drugs that target monoaminergic transmission represent a first-line treatment for major depression. Though a full understanding of the mechanisms that underlie antidepressant efficacy is lacking, evidence supports a role for enhanced excitatory transmission. This can occur through two non-mutually exclusive mechanisms. The first involves increased function of excitatory neurons through relatively direct mechanisms such as enhanced dendritic arborization. Another mechanism involves reduced inhibitory function, which occurs with the rapid antidepressant ketamine. Consistent with this, GABAergic interneuron-mediated cortical inhibition is linked to reduced gamma oscillatory power, a rhythm also diminished in depression. Remission of depressive symptoms correlates with restoration of gamma power. As a result of strong excitatory input, reliable GABA release, and fast firing, PV-expressing neurons (PV neurons) represent critical pacemakers for synchronous oscillations. PV neurons also represent the predominant GABAergic population enveloped by perineuronal nets (PNNs), lattice-like structures that localize glutamatergic input. Disruption of PNNs reduces PV excitability and enhances gamma activity. Studies suggest that monoamine reuptake inhibitors reduce integrity of the PNN. Mechanisms by which these inhibitors reduce PNN integrity, however, remain largely unexplored. A better understanding of these issues might encourage development of therapeutics that best up-regulate PNN-modulating proteases. We observe that the serotonin/norepinephrine reuptake inhibitor venlafaxine increases hippocampal matrix metalloproteinase (MMP)-9 levels as determined by ELISA and concomitantly reduces PNN integrity in murine hippocampus as determined by analysis of sections following their staining with a fluorescent PNN-binding lectin. Moreover, venlafaxine-treated mice (30 mg/kg/day) show an increase in carbachol-induced gamma power in ex vivo hippocampal slices as determined by local field potential recording and Matlab analyses. Studies with mice deficient in matrix metalloproteinase 9 (MMP-9), a protease linked to PNN disruption in other settings, suggest that MMP-9 contributes to venlafaxine-enhanced gamma power. In conclusion, our results support the possibility that MMP-9 activity contributes to antidepressant efficacy through effects on the PNN that may in turn enhance neuronal population dynamics involved in mood and/or memory. Cover Image for this issue: doi: 10.1111/jnc.14498.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Ritmo Gama/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Rede Nervosa/efeitos dos fármacos , Cloridrato de Venlafaxina/farmacologia , Animais , Feminino , Ritmo Gama/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteólise/efeitos dos fármacos
16.
Sci Rep ; 8(1): 16230, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385861

RESUMO

Protease activated receptor-1 (PAR-1) and its ligand, matrix metalloproteinase-1 (MMP-1), are altered in several neurodegenerative diseases. PAR-1/MMP-1 signaling impacts neuronal activity in various brain regions, but their role in regulating synaptic physiology in the ventral striatum, which is implicated in motor function, is unknown. The ventral striatum contains two populations of GABAergic spiny projection neurons, D1 and D2 SPNs, which differ with respect to both synaptic inputs and projection targets. To evaluate the role of MMP-1/PAR-1 signaling in the regulation of ventral striatal synaptic function, we performed whole-cell recordings (WCR) from D1 and D2 SPNs in control mice, mice that overexpress MMP-1 (MMP-1OE), and MMP-1OE mice lacking PAR-1 (MMP-1OE/PAR-1KO). WCRs from MMP1-OE mice revealed an increase in spontaneous inhibitory post-synaptic current (sIPSC), miniature IPSC, and miniature excitatory PSC frequency in D1 SPNs but not D2 SPNs. This alteration may be partially PAR-1 dependent, as it was not present in MMP-1OE/PAR-1KO mice. Morphological reconstruction of D1 SPNs revealed increased dendritic complexity in the MMP-1OE, but not MMP-1OE/PAR-1KO mice. Moreover, MMP-1OE mice exhibited blunted locomotor responses to amphetamine, a phenotype also observed in MMP-1OE/PAR-1KO mice. Our data suggest PAR-1 dependent and independent MMP-1 signaling may lead to alterations in striatal neuronal function.


Assuntos
Expressão Gênica , Metaloproteinase 1 da Matriz/genética , Neuritos/fisiologia , Neurônios/fisiologia , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Anfetamina/farmacologia , Animais , Potenciais Pós-Sinápticos Excitadores , Feminino , Humanos , Potenciais Pós-Sinápticos Inibidores , Masculino , Camundongos , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura , Neurônios/citologia
17.
BMC Biol ; 16(1): 105, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30253757

RESUMO

During hearing in mammals, "sensorineural" inner hair cells convert sound wave-generated mechanical input into electrical activity, resulting in glutamate release onto type I spiral ganglion neurons (SGNs) at specialized synapses known as "ribbon synapses". New findings published here in BMC Biology by Sonntag and colleagues indicate a role for the proteoglycan Brevican in forming perineurounal net (PNN) baskets at these synapses and controlling the spatial distribution of presynaptic voltage-gated calcium channels that regulate glutamate release. These findings may provide insight into the mechanism by which individual ribbon synapses within a single hair cell can function in an independent manner to facilitate hearing within a broad dynamic range.


Assuntos
Brevicam , Cálcio , Animais , Matriz Extracelular , Cabelo , Sinapses
18.
Neural Plast ; 2018: 5735789, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29531525

RESUMO

The perineuronal net (PNN) represents a lattice-like structure that is prominently expressed along the soma and proximal dendrites of parvalbumin- (PV-) positive interneurons in varied brain regions including the cortex and hippocampus. It is thus apposed to sites at which PV neurons receive synaptic input. Emerging evidence suggests that changes in PNN integrity may affect glutamatergic input to PV interneurons, a population that is critical for the expression of synchronous neuronal population discharges that occur with gamma oscillations and sharp-wave ripples. The present review is focused on the composition of PNNs, posttranslation modulation of PNN components by sulfation and proteolysis, PNN alterations in disease, and potential effects of PNN remodeling on neuronal plasticity at the single-cell and population level.


Assuntos
Encéfalo/metabolismo , Rede Nervosa/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Proteólise , Animais , Encéfalo/patologia , Humanos , Interneurônios/metabolismo , Interneurônios/patologia , Rede Nervosa/patologia , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Neurônios/patologia , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia
19.
Front Neurosci ; 12: 164, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29599704

RESUMO

Sharp-wave ripples (SWRs) are spontaneous neuronal population events that occur in the hippocampus during sleep and quiet restfulness, and are thought to play a critical role in the consolidation of episodic memory. SWRs occur at a rate of 30-200 events per minute. Their overall abundance may, however, be reduced with aging and neurodegenerative disease. Here we report that the abundance of SWR within murine hippocampal slices can be increased by paced administration of a weak electrical stimulus, especially when the spontaneously occurring rate is low or compromised. Resultant SWRs have large variations in amplitude and ripple patterns, which are morphologically indistinguishable from those of spontaneous SWRs, despite identical stimulus parameters which presumably activate the same CA3 neurons surrounding the electrode. The stimulus intensity for reliably pacing SWRs is weaker than that required for inducing detectable evoked field potentials in CA1. Moreover, repetitive ~1 Hz stimuli with low intensity can reliably evoke thousands of SWRs without detectable LTD or "habituation." Our results suggest that weak stimuli may facilitate the spontaneous emergence of SWRs without significantly altering their characteristics. Pacing SWRs with weak electric stimuli could potentially be useful for restoring their abundance in the damaged hippocampus.

20.
Hippocampus ; 28(1): 42-52, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28921856

RESUMO

Hippocampal sharp wave ripples (SWRs) represent irregularly occurring synchronous neuronal population events that are observed during phases of rest and slow wave sleep. SWR activity that follows learning involves sequential replay of training-associated neuronal assemblies and is critical for systems level memory consolidation. SWRs are initiated by CA2 or CA3 pyramidal cells (PCs) and require initial excitation of CA1 PCs as well as participation of parvalbumin (PV) expressing fast spiking (FS) inhibitory interneurons. These interneurons are relatively unique in that they represent the major neuronal cell type known to be surrounded by perineuronal nets (PNNs), lattice like structures composed of a hyaluronin backbone that surround the cell soma and proximal dendrites. Though the function of the PNN is not completely understood, previous studies suggest it may serve to localize glutamatergic input to synaptic contacts and thus influence the activity of ensheathed cells. Noting that FS PV interneurons impact the activity of PCs thought to initiate SWRs, and that their activity is critical to ripple expression, we examine the effects of PNN integrity on SWR activity in the hippocampus. Extracellular recordings from the stratum radiatum of horizontal murine hippocampal hemisections demonstrate SWRs that occur spontaneously in CA1. As compared with vehicle, pre-treatment (120 min) of paired hemislices with hyaluronidase, which cleaves the hyaluronin backbone of the PNN, decreases PNN integrity and increases SWR frequency. Pre-treatment with chondroitinase, which cleaves PNN side chains, also increases SWR frequency. Together, these data contribute to an emerging appreciation of extracellular matrix as a regulator of neuronal plasticity and suggest that one function of mature perineuronal nets could be to modulate the frequency of SWR events.


Assuntos
Potenciais de Ação/fisiologia , Espaço Extracelular/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Animais , Condroitinases e Condroitina Liases/administração & dosagem , Condroitinases e Condroitina Liases/metabolismo , Feminino , Hipocampo/citologia , Hialuronoglucosaminidase/administração & dosagem , Hialuronoglucosaminidase/metabolismo , Interneurônios/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Parvalbuminas/genética , Parvalbuminas/metabolismo , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA