Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Biol Chem ; 300(6): 107308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657862

RESUMO

A deleterious effect of elevated levels of vitamin A on bone health has been reported in clinical studies. Mechanistic studies in rodents have shown that numbers of periosteal osteoclasts are increased, while endocortical osteoclasts are simultaneously decreased by vitamin A treatment. The present study investigated the in vitro and in vivo effect of all-trans retinoic acid (ATRA), the active metabolite of vitamin A, on periosteal osteoclast progenitors. Mouse calvarial bone cells were cultured in media containing ATRA, with or without the osteoclastogenic cytokine receptor activator of nuclear factor kappa B-ligand (RANKL), on plastic dishes or bone discs. Whereas ATRA did not stimulate osteoclast formation alone, the compound robustly potentiated the formation of RANKL-induced bone resorbing osteoclasts. This effect was due to stimulation by ATRA (half-maximal stimulation ∼3 nM) on the numbers of macrophages/osteoclast progenitors in the bone cell cultures, as assessed by mRNA and protein expression of several macrophage and osteoclast progenitor cell markers, such as macrophage colony-stimulating factor receptor, receptor activator of nuclear factor kappa B, F4/80, and CD11b, as well as by flow cytometry (FACS) analysis of CD11b+/F480+/Gr1- cells. The stimulation of macrophage numbers in the periosteal cell cultures was not mediated by increased macrophage colony-stimulating factor or interleukin-34. In contrast, ATRA did not enhance macrophages in bone marrow cell cultures. Importantly, ATRA treatment upregulated the mRNA expression of several macrophage-related genes in the periosteum of tibia in adult mice. These observations demonstrate a novel mechanism by which vitamin A enhances osteoclast formation specifically on periosteal surfaces.


Assuntos
Macrófagos , Osteoclastos , Periósteo , Ligante RANK , Vitamina A , Animais , Camundongos , Osteoclastos/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Periósteo/metabolismo , Periósteo/citologia , Ligante RANK/metabolismo , Vitamina A/farmacologia , Vitamina A/metabolismo , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Células Cultivadas , Tretinoína/farmacologia , Osteogênese/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino
2.
Vitam Horm ; 120: 231-270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35953112

RESUMO

Osteoporosis is a significant health problem, with skeletal fractures increasing morbidity and mortality. Excess glucocorticoids (GC) represents the leading cause of secondary osteoporosis. The first phase of glucocorticoid-induced osteoporosis is increased bone resorption. In this Chapter, in vitro studies of the direct glucocorticoid receptor (GR) mediated cellular effects of GC on osteoclasts to affect bone resorption and indirect effects on osteoblast lineage cells to increase the RANKL/OPG ratio and stimulate osteoclastogenesis and bone resorption are reviewed in detail, together with detailed descriptions of in vivo effects of GC in different portions of the skeleton in research animals and humans. Brief sections are devoted to contrasting functions of GC in osteonecrosis, vitamin D formation, in vitro and in vivo bone resorptive actions dependent on vitamin D receptor and vitamin D toxicity, as well as the molecular basis of GR action. Included are also more detailed assessments of the interactions of GC with the major calcium regulating hormones, 1,25(OH)2-vitamin D3 and parathyroid hormone, describing the in vitro increases in RANKL/OPG ratios, osteoclastogenesis and synergistic bone resorption that occurs when GC is combined with either 1,25(OH)2-vitamin D3 or parathyroid hormone. Additionally, a molecular basic for the synergistic interaction of GC with 1,25(OH)2-vitamin D3 is provided along with a suggested molecular basic for the interaction between GC and parathyroid hormone.


Assuntos
Reabsorção Óssea , Osteoporose , Animais , Reabsorção Óssea/induzido quimicamente , Cálcio , Hormônios e Agentes Reguladores de Cálcio/farmacologia , Colecalciferol/farmacologia , Glucocorticoides/efeitos adversos , Humanos , Osteoclastos/fisiologia , Hormônio Paratireóideo/farmacologia
3.
FASEB J ; 33(12): 14394-14409, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31675485

RESUMO

Glucocorticoid (GC) therapy decreases bone mass and increases the risk of fractures. We investigated interactions between the GC dexamethasone (DEX) and the bone resorptive agents 1,25(OH)2-vitamin D3 (D3) and parathyroid hormone (PTH) on osteoclastogenesis. We observed a synergistic potentiation of osteoclast progenitor cell differentiation and formation of osteoclasts when DEX was added to either D3- or PTH-treated mouse bone marrow cell (BMC) cultures. Cotreatment of DEX with D3 or PTH increased gene encoding calcitonin receptor (Calcr), acid phosphatase 5, tartrate resistant (Acp5), cathepsin K (Ctsk), and TNF superfamily member 11 (Tnfsf11) mRNA, receptor activator of NF-κB ligand protein (RANKL), numbers of osteoclasts on plastic, and pit formation and release of C-terminal fragment of type I collagen from cells cultured on bone slices. Enhanced RANKL protein expression caused by D3 and DEX was absent in BMC from mice in which the GC receptor (GR) was deleted in stromal cells/osteoblasts. Synergistic interactions between DEX and D3 on RANKL and osteoclast formation were present in BMC from mice with attenuated GR dimerization. These data demonstrate that the GR cooperates with D3 and PTH signaling, causing massive osteoclastogenesis, which may explain the rapid bone loss observed with high dosages of GC treatment.-Conaway, H. H., Henning, P., Lie, A., Tuckermann, J., Lerner, U. H. Glucocorticoids employ the monomeric glucocorticoid receptor to potentiate vitamin D3 and parathyroid hormone-induced osteoclastogenesis.


Assuntos
Colecalciferol/farmacologia , Dexametasona/farmacologia , Osteogênese/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Receptores de Glucocorticoides/metabolismo , Animais , Sinergismo Farmacológico , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Ligante RANK/genética , Ligante RANK/metabolismo
4.
J Endocrinol ; 239(3): 389-402, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30388359

RESUMO

Excess vitamin A has been associated with decreased cortical bone thickness and increased fracture risk. While most studies in rodents have employed high dosages of vitamin A for short periods of time, we investigated the bone phenotype in mice after longer exposure to more clinically relevant doses. For 1, 4 and 10 weeks, mice were fed a control diet (4.5 µg retinyl acetate/g chow), a diet modeled from the human upper tolerable limit (UTL; 20 µg retinyl acetate/g chow) and a diet three times UTL (supplemented; 60 µg retinyl acetate/g chow). Time-dependent decreases in periosteal circumference and bone mineral content were noted with the supplemented dose. These reductions in cortical bone resulted in a significant time-dependent decrease of predicted strength and a non-significant trend toward reduced bone strength as analyzed by three-point bending. Trabecular bone in tibiae and vertebrae remained unaffected when vitamin A was increased in the diet. Dynamic histomorphometry demonstrated that bone formation was substantially decreased after 1 week of treatment at the periosteal site with the supplemental dose. Increasing amount of vitamin A decreased endocortical circumference, resulting in decreased marrow area, a response associated with enhanced endocortical bone formation. In the presence of bisphosphonate, vitamin A had no effect on cortical bone, suggesting that osteoclasts are important, even if effects on bone resorption were not detected by osteoclast counting, genes in cortical bone or analysis of serum TRAP5b and CTX. In conclusion, our results indicate that even clinically relevant doses of vitamin A have a negative impact on the amount of cortical bone.


Assuntos
Osso Cortical/efeitos dos fármacos , Hipervitaminose A/metabolismo , Osteogênese/efeitos dos fármacos , Vitamina A/efeitos adversos , Animais , Reabsorção Óssea , Osso Cortical/metabolismo , Suplementos Nutricionais , Difosfonatos , Feminino , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Vitamina A/administração & dosagem , Vitamina A/sangue
5.
J Leukoc Biol ; 104(6): 1133-1145, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30059166

RESUMO

Increased intake of vitamin A (retinoids) is associated with decreased bone mass and increased fracture risk in humans. Mechanistic studies in rodents have shown that hypervitaminosis A results in decreased bone mass caused by an increase in periosteal osteoclasts while simultaneously decreasing endocortic osteoclasts. In vivo and ex vivo bone organ cultures have demonstrated that excess retinoids increase osteoclast formation due to increased receptor activator of nuclear factor kappa B-ligand (RANKL) expression. In vitro, studies using murine bone marrow macrophages (BMM) have shown that retinoids inhibit osteoclast formation induced by recombinant RANKL. These opposing in vivo/ex vivo versus in vitro effects may elucidate why excess retinoids affect periosteal and endocortic osteoclast formation differently. In addition, it has been reported that retinoids can inhibit osteoclast formation under inflammatory conditions such as experimentally induced arthritis in mice. In the present study, we have compared the effect of all-trans-retinoic acid (ATRA) on physiologically and inflammatory induced osteoclastogenesis. ATRA inhibited physiologically induced (RANKL) osteoclast formation of human peripheral blood monocytes and mouse BMM as well as human monocytes stimulated with the pro-inflammatory compounds, TNF-α and LPS. The inhibition was due to impeded differentiation, rather than fusion, of mononucleated progenitor cells. ATRA disrupted differentiation by interfering with osteoclastogenic intracellular signaling. In line with this view, overexpression of Tnfrsf11a (encodes for RANK) in BMM could not overcome the inhibition of osteoclastogenesis by ATRA. The data suggest that ATRA inhibits both physiologic and inflammatory osteoclast differentiation of progenitors from the bone marrow and peripheral blood.


Assuntos
Inflamação/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/patologia , Leucócitos Mononucleares/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/antagonistas & inibidores , Osteoclastos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Ligante RANK/farmacologia , Ligante RANK/fisiologia , Receptor Ativador de Fator Nuclear kappa-B/biossíntese , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptores do Ácido Retinoico/agonistas , Receptores do Ácido Retinoico/antagonistas & inibidores , Receptores do Ácido Retinoico/fisiologia , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
6.
Bone ; 93: 43-54, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27596806

RESUMO

Glucocorticoid (GC) therapy is the greatest risk factor for secondary osteoporosis. Pathogenic mechanisms involve an initial increase in bone resorption followed by decreased bone formation. To gain a better understanding of the resorptive activity of GCs, we have used mouse bone marrow macrophages (BMM) to determine if GCs can directly modulate RANKL stimulated osteoclast formation and/or activity. In agreement with previous studies, experiments performed in plastic wells showed that GCs (dexamethasone, hydrocortisone, and prednisolone) inhibited osteoclast number and size during the initial phases of RANKL stimulated osteoclastogenesis; however, in prolonged cultures, decreased apoptosis was observed and escape from GC induced inhibition occurred with an enhanced number of osteoclasts formed, many with an increased area. When BMM cells were seeded on bone slices, GCs robustly enhanced RANKL stimulated formation of resorption pits and release of CTX without affecting the number or size of osteoclasts formed and with no effect on apoptosis. Stimulation of pit formation was not associated with increased life span of osteoclasts or an effect on mRNA expression of several osteoclastic or osteoclastogenic genes. The potentiation of RANKL induced CTX release by dexamethasone was significantly less in BMM cells from mice with conditional knockout of the osteoclastic glucocorticoid receptor and completely absent in cells from GRdim mice, which carry a point mutation in one dimerizing interface of the GC receptor. These data suggest that: 1. Plastic is a poor medium to use for studying direct effects of GCs on osteoclasts 2. GCs can enhance bone resorption without decreasing apoptosis, and 3. A direct enhancement of RANKL mediated resorption is stimulated by the dimeric GC-receptor.


Assuntos
Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular , Osteoclastos/metabolismo , Multimerização Proteica , Ligante RANK/farmacologia , Receptores de Glucocorticoides/metabolismo , Células-Tronco/metabolismo , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Gigantes/efeitos dos fármacos , Células Gigantes/metabolismo , Células Gigantes/patologia , Glucocorticoides/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Peptídeos/metabolismo , Células-Tronco/efeitos dos fármacos
7.
Artigo em Inglês | MEDLINE | ID: mdl-25814978

RESUMO

Vitamin A (retinol) is a necessary and important constituent of the body which is provided by food intake of retinyl esters and carotenoids. Vitamin A is known best for being important for vision, but in addition to the eye, vitamin A is necessary in numerous other organs in the body, including the skeleton. Vitamin A is converted to an active compound, all-trans-retinoic acid (ATRA), which is responsible for most of its biological actions. ATRA binds to intracellular nuclear receptors called retinoic acid receptors (RARα, RARß, RARγ). RARs and closely related retinoid X receptors (RXRα, RXRß, RXRγ) form heterodimers which bind to DNA and function as ligand-activated transcription factors. It has been known for many years that hypervitaminosis A promotes skeleton fragility by increasing osteoclast formation and decreasing cortical bone mass. Some epidemiological studies have suggested that increased intake of vitamin A and increased serum levels of retinoids may decrease bone mineral density and increase fracture rate, but the literature on this is not conclusive. The current review summarizes how vitamin A is taken up by the intestine, metabolized, stored in the liver, and processed to ATRA. ATRA's effects on formation and activity of osteoclasts and osteoblasts are outlined, and a summary of clinical data pertaining to vitamin A and bone is presented.

8.
Endocr Rev ; 34(6): 766-97, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23720297

RESUMO

Vitamin A (retinol) is ingested as either retinyl esters or carotenoids and metabolized to active compounds such as 11-cis-retinal, which is important for vision, and all-trans-retinoic acid, which is the primary mediator of biological actions of vitamin A. All-trans-retinoic acid binds to retinoic acid receptors (RARs), which heterodimerize with retinoid X receptors. RAR-retinoid X receptor heterodimers function as transcription factors, binding RAR-responsive elements in promoters of different genes. Numerous cellular functions, including bone cell functions, are mediated by vitamin A; however, it has long been recognized that increased levels of vitamin A can have deleterious effects on bone, resulting in increased skeletal fragility. Bone mass is dependent on the balance between bone resorption and bone formation. A decrease in bone mass may be caused by either an excess of resorption or decreased bone formation. Early studies indicated that the primary skeletal effect of vitamin A was to increase bone resorption, but later studies have shown that vitamin A can not only stimulate the formation of bone-resorbing osteoclasts but also inhibit their formation. Effects of vitamin A on bone formation have not been studied in as great a detail and are not as well characterized as effects on bone resorption. Several epidemiological studies have shown an association between vitamin A, decreased bone mass, and osteoporotic fractures, but the data are not conclusive because other studies have found no associations, and some studies have suggested that vitamin A primarily promotes skeletal health. In this presentation, we have summarized how vitamin A is absorbed and metabolized and how it functions intracellularly. Vitamin A deficiency and excess are introduced, and detailed descriptions of clinical and preclinical studies of the effects of vitamin A on the skeleton are presented.


Assuntos
Osso e Ossos/fisiologia , Homeostase , Vitamina A/metabolismo , Vitamina A/fisiologia , Animais , Humanos , Fígado/metabolismo , Receptores do Ácido Retinoico/fisiologia , Receptores X de Retinoides/fisiologia , Visão Ocular/fisiologia , Vitamina A/provisão & distribuição , Deficiência de Vitamina A/complicações , Deficiência de Vitamina A/epidemiologia
9.
Mol Immunol ; 49(4): 601-10, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22142941

RESUMO

Cytokines produced by inflammatory or resident mesenchymal cells play important modulatory roles in the pathogenesis of inflammation induced bone loss. In the present study, the effects of IL-4 and IL-13 on the expression of three osteotropic cytokines in the IL-6 family expressed in human gingival fibroblasts were studied. IL-4Rα and IL-13Rα1 mRNA were constitutively expressed in human gingival fibroblasts. The inflammatory cytokines IL-1ß and TNF-α increased expression of IL-6, LIF, and IL-11 mRNA and protein in the gingival fibroblasts. Addition of IL-4 or IL-13 had no effect on IL-6 expression, but significantly inhibited LIF and IL-11 mRNA and protein stimulated by IL-1ß and TNF-α. No involvement of NF-κB or STAT1 was observed in the inhibition. STAT6 was phosphorylated at Y641 by treatment with IL-4 and knockdown of STAT6 with siRNA decreased the inhibition of IL-11 and LIF expression by IL-4 in IL-1ß and TNF-α stimulated cells. This study suggests that activation of STAT6 by IL-4 and IL-13, through type 2 IL-4 receptors, inhibits production of IL-11 and LIF stimulated by IL-1ß and TNF-α in human gingival fibroblasts. A negative modulatory role of IL-4 and IL-13 in osteotropic cytokine production could be a mechanism playing an important inhibitory role in inflammation induced periodontitis.


Assuntos
Fibroblastos/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Células Cultivadas , Gengiva/metabolismo , Humanos , Interleucina-11/genética , Interleucina-11/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , NF-kappa B/metabolismo , RNA Mensageiro/genética , Receptores de Interleucina-13/genética , Receptores de Interleucina-13/metabolismo , Receptores de Interleucina-4/genética , Receptores de Interleucina-4/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT6/metabolismo
10.
J Biol Chem ; 286(36): 31425-36, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21715325

RESUMO

Increased vitamin A (retinol) intake has been suggested to increase bone fragility. In the present study, we investigated effects of retinoids on bone resorption in cultured neonatal mouse calvarial bones and their interaction with glucocorticoids (GC). All-trans-retinoic acid (ATRA), retinol, retinalaldehyde, and 9-cis-retinoic acid stimulated release of (45)Ca from calvarial bones. The resorptive effect of ATRA was characterized by mRNA expression of genes associated with osteoclast differentiation, enhanced osteoclast number, and bone matrix degradation. In addition, the RANKL/OPG ratio was increased by ATRA, release of (45)Ca stimulated by ATRA was blocked by exogenous OPG, and mRNA expression of genes associated with bone formation was decreased by ATRA. All retinoid acid receptors (RARα/ß/γ) were expressed in calvarial bones. Agonists with affinity to all receptor subtypes or specifically to RARα enhanced the release of (45)Ca and mRNA expression of Rankl, whereas agonists with affinity to RARß/γ or RARγ had no effects. Stimulation of Rankl mRNA by ATRA was competitively inhibited by the RARα antagonist GR110. Exposure of calvarial bones to GC inhibited the stimulatory effects of ATRA on (45)Ca release and Rankl mRNA and protein expression. This inhibitory effect was reversed by the glucocorticoid receptor (GR) antagonist RU 486. Increased Rankl mRNA stimulated by ATRA was also blocked by GC in calvarial bones from mice with a GR mutation that blocks dimerization (GR(dim) mice). The data suggest that ATRA enhances periosteal bone resorption by increasing the RANKL/OPG ratio via RARα receptors, a response that can be inhibited by monomeric GR.


Assuntos
Reabsorção Óssea/induzido quimicamente , Periósteo/patologia , Ligante RANK/agonistas , Receptores de Glucocorticoides/fisiologia , Retinoides/farmacologia , Animais , Animais Recém-Nascidos , Camundongos , Osteoprotegerina , Ligante RANK/antagonistas & inibidores , Receptores do Ácido Retinoico , Receptor alfa de Ácido Retinoico , Tretinoína/farmacologia
11.
FASEB J ; 23(10): 3526-38, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19546303

RESUMO

Whether vitamin A promotes skeletal fragility, has no effect on fracture rate, or protects against bone loss is unclear. In the present study, effects of retinoids on osteoclast differentiation in cultured mouse bone marrow cells (BMCs), bone marrow macrophages (BMMs), spleen cells, and RAW264.7 cells were evaluated by analyzing osteoclast formation and expression of genes important in signal transduction and osteoclast function. All-trans-retinoic acid (ATRA) did not stimulate osteoclastogenesis in BMCs, but inhibited hormone and RANKL-induced gene expression and formation of osteoclasts. In BMMs, spleen cells, and RAW264.7 cells, osteoclast differentiation and formation stimulated by M-CSF/RANKL were inhibited (IC(50) = 0.3 nM) by ATRA. The effect was exerted at an early step of RANKL-induced differentiation. ATRA also abolished increases of the transcription factors c-Fos and NFAT2 stimulated by RANKL and suppressed down-regulation of the antiosteoclastogenic transcription factor MafB. By comparing effects of several compounds structurally related to ATRA, as well as by using receptor antagonists, evaluation pointed to inhibition being mediated by RARalpha, with no involvement of PPARbeta/delta. The results suggest that activation of RARalpha by retinoids in myeloid hematopoietic precursor cells decreases osteoclast formation by altering expression of the transcription factors c-Fos, NFAT2, and MafB.


Assuntos
Hematopoese/efeitos dos fármacos , Células Progenitoras Mieloides/efeitos dos fármacos , Osteoclastos/citologia , Tretinoína/farmacologia , Animais , Linhagem Celular , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/fisiologia , Ligante RANK/metabolismo , Receptores do Ácido Retinoico/agonistas , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Endocrinology ; 147(7): 3613-22, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16614077

RESUMO

In the present study, dexamethasone treatment of neonatal mouse calvarial bones increased mRNA expression of tartrate-resistant acid phosphatase, calcitonin receptor (CTR), cathepsin K, carbonic anhydrase II, osteoprotegerin (OPG), and receptor activator of nuclear factor-kappaB (RANK) as well as mRNA and protein expression of RANK ligand (RANKL). The increase in OPG mRNA noted with dexamethasone was in contrast to 1,25(OH)(2)-vitamin D3 (D3) treatment, which decreased OPG expression. Stimulation of (45)Ca release by dexamethasone and hydrocortisone in calvariae was blocked by OPG. Stimulation of RANKL, RANK, OPG, and CTR mRNA expression by dexamethasone in calvariae was blocked by the glucocorticoid receptor antagonist RU 38,486. Greater than additive potentiations of CTR mRNA and RANKL mRNA and protein were observed when D3 and dexamethasone were combined. Vitamin D receptor mRNA was increased by dexamethasone and D3, whereas glucocorticoid receptor (GR) mRNA was decreased by dexamethasone and unaffected by D3. No synergistic interaction between dexamethasone and D3 on either vitamin D receptor or GR mRNA expression was noted. The data demonstrate that dexamethasone-induced bone resorption in calvarial bones is associated with increased differentiation of osteoclasts and regulation of the RANKL-RANK-OPG system. The increase in OPG expression and the decrease of GR expression noted with dexamethasone offer an explanation for why bone breakdown in mouse calvariae treated with glucocorticoids is less than that caused by resorptive agents like D3. The synergistic stimulation of RANKL by dexamethasone and D3 offers an explanation of how glucocorticoids and D3 interact to potentiate bone resorption.


Assuntos
Proteínas de Transporte/metabolismo , Glucocorticoides/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Osteoclastos/citologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Crânio/metabolismo , Animais , Reabsorção Óssea , Diferenciação Celular , Dexametasona/metabolismo , Dexametasona/farmacologia , Ligantes , Camundongos , Mifepristona/farmacologia , Osteoprotegerina , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Receptores de Glucocorticoides/metabolismo
13.
J Biol Chem ; 281(5): 2414-29, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16251181

RESUMO

Interleukin (IL)-4 and IL-13 are cytokines that inhibit bone resorption. Data showing an inhibitory effect of IL-4 and IL-13 on RANK mRNA in mouse calvariae were first reported at the 22nd American Society for Bone and Mineral Research Meeting (Lerner, U.H., and Conaway, H. H. 2000) J. Bone Min. Res. 15, Suppl. 1, Abstr. SU 230). In the present study, release of 45Ca from cultured mouse calvarial bones stimulated by different cytokines, peptides, and steroid hormones was inhibited by IL-4 and IL-13. IL-4 and IL-13 decreased receptor activator of nuclear factor-kappaB ligand (RANKL) and RANK mRNA and increased osteoprotegerin (OPG) mRNA in calvariae. Additionally, the cytokines decreased RANKL protein and increased OPG protein in calvarial bones. In osteoblasts isolated from calvariae, both an increase in RANKL mRNA and a decrease in OPG mRNA and protein elicited by vitamin D3 were reversed by IL-4 and IL-13. IL-4 and IL-13 decreased the number of tartrate-resistant acid phosphatase positive multinucleated cells and the mRNA expression of calcitonin receptor, tartrate-resistant acid phosphatase, and cathepsin K in mouse spleen cells and bone marrow macrophages (BMM) treated with macrophage colony-stimulating factor and RANKL. Inhibition of mRNA for RANK and the transcription factor NFAT2 was also noted in spleen cell and BMM cultures treated with IL-4 and IL-13. In addition, RANK mRNA and RANK protein were decreased by IL-4 and IL-13 in RAW 264.7 cells. Osteoblasts, spleen cells, and BMM expressed mRNA for the four proteins making up the IL-4 and IL-13 receptors. No effects by IL-4 on bone resorption and osteoclast formation or on RANKL and RANK mRNA expression were seen in Stat6-/- mice. The data indicate that IL-4 and IL-13, via a STAT6-dependent pathway, inhibit osteoclast differentiation and bone resorption by activating receptors on osteoblasts and osteoclasts that affect the RANKL/RANK/OPG system.


Assuntos
Reabsorção Óssea/induzido quimicamente , Proteínas de Transporte/genética , Glicoproteínas/genética , Interleucina-13/farmacologia , Interleucina-4/farmacologia , Glicoproteínas de Membrana/genética , Osteoclastos/citologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores do Fator de Necrose Tumoral/genética , Fator de Transcrição STAT6/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Citocinas/farmacologia , Glicoproteínas/análise , Hormônios/farmacologia , Camundongos , Camundongos Mutantes , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoprotegerina , Ligante RANK , RNA Mensageiro/análise , Receptor Ativador de Fator Nuclear kappa-B , Receptores Citoplasmáticos e Nucleares/análise , Receptores do Fator de Necrose Tumoral/análise , Crânio
14.
J Immunol ; 169(6): 3353-62, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12218157

RESUMO

IL-6, leukemia inhibitory factor (LIF), and oncostatin M (OSM) are IL-6-type cytokines that stimulate osteoclast formation and function. In the present study, the resorptive effects of these agents and their regulation of receptor activator of NF-kappaB ligand (RANKL), RANK, and osteoprotegerin (OPG) were studied in neonatal mouse calvaria. When tested separately, neither human (h) IL-6 nor the human soluble IL-6R (shIL-6R) stimulated bone resorption, but when hIL-6 and the shIL-6R were combined, significant stimulation of both mineral and matrix release from bone explants was noted. Semiquantitative RT-PCR showed that hIL-6 plus shIL-6R enhanced the expression of RANKL and OPG in calvarial bones, but decreased RANK expression. Human LIF, hOSM, and mouse OSM (mOSM) also stimulated 45Ca release and enhanced the mRNA expression of RANKL and OPG in mouse calvaria, but had no effect on the expression of RANK. In agreement with the RT-PCR analyses, ELISA measurements showed that both hIL-6 plus shIL-6R and mOSM increased RANKL and OPG proteins. 1,25-Dihydroxyvitamin D3 (D3) also increased the RANKL protein level, but decreased the protein level of OPG. OPG inhibited 45Ca release stimulated by RANKL, hIL-6 plus shIL-6R, hLIF, hOSM, mOSM, and D3. An Ab neutralizing mouse gp130 inhibited 45Ca release induced by hIL-6 plus shIL-6R. These experiments demonstrated stimulation of calvarial bone resorption and regulation of mRNA and protein expression of RANKL and OPG by D3 and IL-6 family cytokines as well as regulation of RANK expression in preosteoclasts/osteoclasts of mouse calvaria by D3 and hIL-6 plus shIL-6R.


Assuntos
Reabsorção Óssea/metabolismo , Proteínas de Transporte/biossíntese , Glicoproteínas/biossíntese , Inibidores do Crescimento/fisiologia , Interleucina-6/fisiologia , Linfocinas/fisiologia , Glicoproteínas de Membrana/biossíntese , Peptídeos/fisiologia , Receptores Citoplasmáticos e Nucleares/biossíntese , Crânio/metabolismo , Animais , Animais Recém-Nascidos , Antígenos CD/biossíntese , Antígenos CD/imunologia , Calcitriol/farmacologia , Radioisótopos de Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Receptor gp130 de Citocina , Dinoprostona/metabolismo , Dinoprostona/fisiologia , Combinação de Medicamentos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Inibidores do Crescimento/metabolismo , Humanos , Soros Imunes/farmacologia , Fator Inibidor de Leucemia , Subunidade alfa de Receptor de Fator Inibidor de Leucemia , Ligantes , Linfocinas/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Oncostatina M , Técnicas de Cultura de Órgãos , Osteoblastos/metabolismo , Osteoprotegerina , Peptídeos/metabolismo , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Receptores de Citocinas/biossíntese , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Interleucina-6/biossíntese , Receptores de Interleucina-6/fisiologia , Receptores de OSM-LIF , Receptores de Oncostatina M , Receptores do Fator de Necrose Tumoral , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Crânio/citologia , Crânio/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA