Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Bioelectrochemistry ; 156: 108624, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38104458

RESUMO

Electrochemotherapy (ECT) with bleomycin is an effective antitumor treatment. Still, researchers are investigating new drugs and electroporation conditions to improve its efficacy. To this aim, in vivo assays are accurate but expensive and ethically questionable. Conversely, in vitro assays, although cheaper and straightforward, do not reflect the architecture of the biological tissue because they lack a tridimensional (3D) structure (as in the case of two-dimensional [2D] in vitro assays) or do not include all the extracellular matrix components (as in the case of 3D in vitro scaffolds). To address this issue, 3D in vitro models have been proposed, including spheroids and hydrogel-based cultures, which require a suitable low-conductive medium to allow cell membrane electroporation. In this study, a synthetic scaffold based on hyaluronic acid (HA) and self-assembling peptides (SAPs; EAbuK), condensed with a Laminin-derived adhesive sequence (IKVAV), is proposed as a reliable alternative. We compare SKMEL28 cells cultured in the HA-EAbuK-IKVAV scaffold to the control (HA only scaffold). Three days after seeding, the culture on the HA-EAbuK-IKVAV scaffold showed collagen production. SKMEL28 cells cultured on the HA-EAbuK-IKVAV scaffold started to be electroporated at 400 V/cm, whereas, at the same electric field intensity, those cultured on HA were not. As a reference, 2D experiments showed that electroporation of SKMEL28 cells starts at 600 V/cm using an electroporation buffer and at 800 V/cm in a culture medium, but with very low efficiency (<50 % of cells electroporated). 3D cultures on HA-EAbuK-IKVAV allowed the simulation of a more reliable microenvironment and may represent a valuable tool for studying electroporation conditions. Using Finite Element Analysis (FEA) to compute the transmembrane potential, we detected the influence of inhomogeneity of the extracellular matrix on electroporation effect. Our 3D cell culture electroporation simulations showed that the transmembrane potential increased when collagen surrounded the cells. Of note, in the collagen-enriched HA-EAbuK-IKVAV scaffold, EP was already improved at lower electric field intensities. This study shows the influence of the extracellular matrix on electric conductivity and electric field distribution on cell membrane electroporation and supports the adoption of more reliable 3D scaffolds in experimental electroporation studies.


Assuntos
Ácido Hialurônico , Melanoma , Humanos , Ácido Hialurônico/química , Melanoma/patologia , Eletroporação/métodos , Matriz Extracelular , Colágeno/uso terapêutico , Alicerces Teciduais/química , Microambiente Tumoral
2.
Bioengineering (Basel) ; 10(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37760163

RESUMO

Finite element analysis is used in this study to investigate the effect of media inhomogeneity on the electric field distribution in a sample composed of cells and their extracellular matrix. The sample is supposed to be subjected to very high pulsed electric field. Numerically computed electric field distribution and transmembrane potential at the cell membrane in electroporation conditions are considered in order to study cell behavior at different degrees of inhomogeneity. The different inhomogeneity grade is locally obtained using a representative model of fixed volume with cell-cell distance varying in the range of 1-283 um. The conductivity of the extracellular medium was varied between plain collagen and a gel-like myxoid matrix through combinations of the two, i.e., collagen and myxoid. An increase in the transmembrane potential was shown in the case of higher aggregate. The results obtained in this study show the effect of the presence of the cell aggregates and collagen on the transmembrane potential. In particular, by increasing the cell aggregation in the two cases, the transmembrane potential increased. Finally, the simulation results were compared to experimental data obtained by culturing HCC1954 cells in a hyaluronic acid-based scaffold. The experimental validation confirmed the behavior of the transmembrane potential in presence of the collagen: an increase in electroporation at a lower electric field intensity was found for the cells cultured in the scaffolds where there is the formation of collagen areas.

3.
J Tissue Eng ; 14: 20417314231151826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874984

RESUMO

Severe tracheal injuries that cannot be managed by mobilization and end-to-end anastomosis represent an unmet clinical need and an urgent challenge to face in surgical practice; within this scenario, decellularized scaffolds (eventually bioengineered) are currently a tempting option among tissue engineered substitutes. The success of a decellularized trachea is expression of a balanced approach in cells removal while preserving the extracellular matrix (ECM) architecture/mechanical properties. Revising the literature, many Authors report about different methods for acellular tracheal ECMs development; however, only few of them verified the devices effectiveness by an orthotopic implant in animal models of disease. To support translational medicine in this field, here we provide a systematic review on studies recurring to decellularized/bioengineered tracheas implantation. After describing the specific methodological aspects, orthotopic implant results are verified. Furtherly, the only three clinical cases of compassionate use of tissue engineered tracheas are reported with a focus on outcomes.

4.
Cells ; 12(6)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36980229

RESUMO

Tracheal reconstruction represents a challenge when primary anastomosis is not feasible. Within this scenario, the study aim was to develop a new pig-derived decellularized trachea (DecellT) to be compared with the cryopreserved counterpart (CryoT) for a close predictive analysis. Tracheal segments underwent decellularization by a physical + enzymatic + chemical method (12 cycles); in parallel, cryopreserved samples were also prepared. Once decellularized (histology/DNA quantification), the two groups were characterized for Alpha-Gal epitopes/structural proteins (immunohistochemistry/histology/biochemical assays/second harmonic generation microscopy)/ultrastructure (Scanning Electron Microscopy (SEM))/mechanical behaviour. Cytotoxicity absence was assessed in vitro (extract-test assay/direct seeding, HM1SV40 cell line) while biocompatibility was verified in BALB/c mice, followed by histological/immunohistochemical analyses and SEM (14 days). Decellularization effectively removed Alpha-Gal epitopes; cartilage histoarchitecture was retained in both groups, showing chondrocytes only in the CryoT. Cryopreservation maintained few respiratory epithelium sparse cilia, not detectable in DecellT. Focusing on ECM, preserved structural/ultrastructural organization and collagen content were observed in the cartilage of both; conversely, the GAGs were significantly reduced in DecellT, as confirmed by mechanical study results. No cytotoxicity was highlighted by CryoT/DecellT in vitro, as they were also corroborated by a biocompatibility assay. Despite some limitations (cells presence/GAGs reduction), CryoT/DecellT are both appealing options, which warrant further investigation in comparative in vivo studies.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Camundongos , Suínos , Animais , Engenharia Tecidual/métodos , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Criopreservação/métodos
5.
Cancers (Basel) ; 14(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954311

RESUMO

The Epidermal Growth Factor Receptor (EGFR) is a transmembrane glycoprotein belonging to the protein kinase superfamily. It is composed of an extracellular domain, a transmembrane anchoring region and a cytoplasmic region endowed with tyrosine kinase activity. Genetic mutations of EGFR kinase cause higher activity thereby stimulating downstream signaling pathways that, in turn, impact transcription and cell cycle progression. Due to the involvement of mutant EGFR in tumors and inflammatory diseases, in the past decade, several EGFR inhibitory strategies have been extensively studied, either targeting the extracellular domain (through monoclonal antibodies) or the intracellular kinase domain (through ATP-mimic small molecules). Monoclonal antibodies impair the binding to growth factor, the receptor dimerization, and its activation, whereas small molecules block the intracellular catalytic activity. Herein, we describe the development of a novel small molecule, called DSF-102, that interacts with the extracellular domain of EGFR. When tested in vitro in KRAS mutant A549 cells, it impairs EGFR activity by exerting (i) dose-dependent toxicity effects; (ii) a negative regulation of ERK, MAPK p38 and AKT; and (iii) a modulation of the intracellular trafficking and lysosomal degradation of EGFR. Interestingly, DSF-102 exerts its EGFR inhibitory activity without showing interaction with the intracellular kinase domain. Taken together, these findings suggest that DSF-102 is a promising hit compound for the development of a novel class of anti-EGFR compounds, i.e., small molecules able to interact with the extracellular domain of EGFR and useful for overcoming the KRAS-driven resistance to TKI treatment.

6.
Front Oncol ; 11: 684396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150648

RESUMO

Adrenomedullin (ADM) is a hypotensive and vasodilator peptide belonging to the calcitonin gene-related peptide family. It is secreted in vitro by endothelial cells and vascular smooth muscle cells, and is significantly upregulated by a number of stimuli. Moreover, ADM participates in the regulation of hematopoietic compartment, solid tumors and leukemias, such as acute myeloid leukemia (AML). To better characterize ADM involvement in AML pathogenesis, we investigated its expression during human hematopoiesis and in leukemic subsets, based on a morphological, cytogenetic and molecular characterization and in T cells from AML patients. In hematopoietic stem/progenitor cells and T lymphocytes from healthy subjects, ADM transcript was barely detectable. It was expressed at low levels by megakaryocytes and erythroblasts, while higher levels were measured in neutrophils, monocytes and plasma cells. Moreover, cells populating the hematopoietic niche, including mesenchymal stem cells, showed to express ADM. ADM was overexpressed in AML cells versus normal CD34+ cells and in the subset of leukemia compared with hematopoietic stem cells. In parallel, we detected a significant variation of ADM expression among cytogenetic subgroups, measuring the highest levels in inv(16)/t(16;16) or complex karyotype AML. According to the mutational status of AML-related genes, the analysis showed a lower expression of ADM in FLT3-ITD, NPM1-mutated AML and FLT3-ITD/NPM1-mutated cases compared with wild-type ones. Moreover, ADM expression had a negative impact on overall survival within the favorable risk class, while showing a potential positive impact within the subgroup receiving a not-intensive treatment. The expression of 135 genes involved in leukemogenesis, regulation of cell proliferation, ferroptosis, protection from apoptosis, HIF-1α signaling, JAK-STAT pathway, immune and inflammatory responses was correlated with ADM levels in the bone marrow cells of at least two AML cohorts. Moreover, ADM was upregulated in CD4+ T and CD8+ T cells from AML patients compared with healthy controls and some ADM co-expressed genes participate in a signature of immune tolerance that characterizes CD4+ T cells from leukemic patients. Overall, our study shows that ADM expression in AML associates with a stem cell phenotype, inflammatory signatures and genes related to immunosuppression, all factors that contribute to therapy resistance and disease relapse.

7.
Tissue Eng Regen Med ; 18(3): 411-427, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33625723

RESUMO

BACKGROUND: Stem cell therapy is gaining momentum as an effective treatment strategy for degenerative diseases. Adult stem cells isolated from various sources (i.e., cord blood, bone marrow, adipose tissue) are being considered as a realistic option due to their well-documented therapeutic potentials. Our previous studies standardized a method to isolate circulating multipotent cells (CMCs) that are able to sustain long term in vitro culture and differentiate towards mesodermal lineages. METHODS: In this work, long-term cultures of CMCs were stimulated to study in vitro neuronal and myogenic differentiation. After induction, cells were analysed at different time points. Morphological studies were performed by scanning electron microscopy and specific neuronal and myogenic marker expression were evaluated using RT-PCR, flow cytometry and western blot. For myogenic plasticity study, CMCs were transplanted into in vivo model of chemically-induced muscle damage. RESULTS: After neurogenic induction, CMCs showed characteristic dendrite-like morphology and expressed specific neuronal markers both at mRNA and protein level. The calcium flux activity of CMCs under stimulation with potassium chloride and the secretion of noradrenalin confirmed their ability to acquire a functional phenotype. In parallel, the myogenic potential of CMCs was confirmed by their ability to form syncytium-like structures in vitro and express myogenic markers both at early and late phases of differentiation. Interestingly, in a rat model of bupivacaine-induced muscle damage, CMCs integrated within the host tissue taking part in tissue repair. CONCLUSION: Overall, collected data demonstrated long-term cultured CMCs retain proliferative and differentiative potentials suggesting to be a good candidate for cell therapy.


Assuntos
Células-Tronco Adultas , Desenvolvimento Muscular , Tecido Adiposo , Animais , Diferenciação Celular , Neurogênese , Ratos
8.
Biomolecules ; 11(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504020

RESUMO

Photodynamic therapy (PDT) is frequently used to treat non-muscle invasive bladder cancer due its low toxicity and high selectivity. Since recurrence often occurs, alternative approaches and/or designs of combined therapies to improve PDT effectiveness are needed. This work aimed to evaluate the cytotoxicity of 4,6,4'-trimethylangelicin (TMA) photoactivated by blue light (BL) on human bladder cancer T24 cells and investigate the mechanisms underlying its biological effects. TMA/BL exerted antiproliferative activity through the induction of apoptosis without genotoxicity, as demonstrated by the expression levels of phospho-H2AX, an indicator of DNA double-stranded breaks. It also modulated the Wnt canonical signal pathway by increasing the phospho-ß-catenin and decreasing the nuclear levels of ß-catenin. The inhibition of this pathway was due to the modulation of the GSK3ß phosphorylation state (Tyr 216) that induces a proteasomal degradation of ß-catenin. Indeed, a partial recovery of nuclear ß-catenin expression and reduction of its phosphorylated form after treatment with LiCl were detected. As demonstrated by RT-PCR and cytofluorimetric analysis, TMA/BL also decreased the expression of CD44v6, a marker of cancer stem cells. Taken together, our data suggest that TMA photoactivated by BL may represent an interesting option for the photochemotherapy of noninvasive bladder carcinomas, since this treatment is able to inhibit key pathways for tumour growth and progression in the absence of genotoxic effects.


Assuntos
Carcinoma/tratamento farmacológico , Furocumarinas/química , Fotoquimioterapia/métodos , Fototerapia/métodos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Apoptose , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Sobrevivência Celular , Progressão da Doença , Histonas/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Técnicas In Vitro , Luz , Fibras Ópticas , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Bexiga Urinária/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
9.
Bioengineering (Basel) ; 8(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375053

RESUMO

During anticancer drug development, most compounds selected by in vitro screening are ineffective in in vivo studies and clinical trials due to the unreliability of two-dimensional (2D) in vitro cultures that are unable to mimic the cancer microenvironment. Herein, HCC1954 cell cultures on electrospun polycaprolactone (PCL) were characterized by morphological analysis, cell viability assays, histochemical staining, immunofluorescence, and RT-PCR. Our data showed that electrospun PCL allows the in vitro formation of cultures characterized by mucopolysaccharide production and increased cancer stem cell population. Moreover, PCL-based cultures were less sensitive to doxorubicin and electroporation/bleomycin than those grown on polystyrene plates. Collectively, our data indicate that PCL-based cultures may be promising tools for preclinical studies.

10.
Bioelectrochemistry ; 136: 107626, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32784105

RESUMO

Nowadays, electroporation (EP) represents a promising method for the intracellular delivery of anticancer drugs. To setting up the process, the EP efficiency is usually evaluated by using cell suspension and adherent cell cultures that are not representative of the in vivo conditions. Indeed, cells are surrounded by extracellular matrix (ECM) whose composition and physical characteristics are different for each tissue. So, various three-dimensional (3D) in vitro models, such as spheroids and hydrogel-based cultures, have been proposed to mimic the tumour microenvironment. Herein, a 3D breast cancer in vitro model has been proposed. HCC1954 cells were seeded on crosslinked and lyophilized matrices composed of hyaluronic acid (HA) and ionic complementary self-assembling peptides (SAPs) already known to provide a fibrous structure mimicking collagen network. Herein, SAPs were functionalized with laminin derived IKVAV adhesion motif. Cultures were characterized by spheroids surrounded by ECM produced by cancer cells as demonstrated by collagen1a1 and laminin B1 transcripts. EP was carried out on both 2D and 3D cultures: a sequence of 8 voltage pulses at 5 kHz with different amplitude was applied using a plate electrode. Cell sensitivity to EP seemed to be modulated by the presence of ECM and the different cell organization. Indeed, cells cultured on HA-IKVAV were more sensitive than those treated in 2D and HA cultures, in terms of both cell membrane permeabilization and viability. Collectively, our results suggest that HA-IKVAV cultures may represent an interesting model for EP studies. Further studies will be needed to elucidate the influence of ECM composition on EP efficiency.


Assuntos
Neoplasias da Mama/patologia , Proliferação de Células , Eletroporação/métodos , Ácido Hialurônico/química , Alicerces Teciduais , Matriz Extracelular/metabolismo , Feminino , Humanos , Células MCF-7 , Microambiente Tumoral
11.
Cancers (Basel) ; 12(4)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340405

RESUMO

Gene Electro-Transfer (GET) is a powerful method of DNA delivery with great potential for medical applications. Although GET has been extensively studied in vitro and in vivo, the optimal parameters remain controversial. 2D cell cultures have been widely used to investigate GET protocols, but have intrinsic limitations, whereas 3D cultures may represent a more reliable model thanks to the capacity of reproducing the tumor architecture. Here we applied two GET protocols, using a plate or linear electrode, on 3D-cultured HCC1954 and MDA-MB231 breast cancer cell lines grown on a novel collagen-free 3D scaffold and compared results with conventional 2D cultures. To evaluate the electrotransfer efficiency, we used the plasmid pEGFP-C3 encoding the enhanced green fluorescent protein (EGFP) reporter gene. The novel 3D scaffold promoted extracellular matrix deposition, which particularly influences cell behavior in both in vitro cell cultures and in vivo tumor tissue. While the transfection efficiency was similar in the 2D-cultures, we observed significant differences in the 3D-model. The transfection efficiency in the 3D vs 2D model was 44% versus 15% (p < 0.01) and 24% versus 17% (p < 0.01) in HCC1954 and MDA-MB231 cell cultures, respectively. These findings suggest that the novel 3D scaffold allows reproducing, at least partially, the peculiar morphology of the original tumor tissues, thus allowing us to detect meaningful differences between the two cell lines. Following GET with plate electrodes, cell viability was higher in 3D-cultured HCC1954 (66%) and MDA-MB231 (96%) cell lines compared to their 2D counterpart (53% and 63%, respectively, p < 0.001). Based on these results, we propose the novel 3D scaffold as a reliable support for the preparation of cell cultures in GET studies. It may increase the reliability of in vitro assays and allow the optimization of GET parameters of in vivo protocols.

12.
J Cell Mol Med ; 22(3): 1840-1854, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314633

RESUMO

The wound healing is a complex process wherein inflammation, proliferation and regeneration evolve according to a spatio-temporal pattern from the activation of coagulation cascade to the formation of a plug clot including fibrin matrix, blood-borne cells and cytokines/growth factors. Creating environments conducive to tissue repair, the haemoderivatives are commonly proposed for the treatment of hard-to-heal wounds. Here, we explored in vitro the intrinsic regenerative potentialities of a leucocyte- and platelet-rich fibrin product, known as CPL-MB, defining the stemness grade of cells sprouting from the haemoderivative. Using highly concentrated serum-based medium to simulate wound conditions, we isolated fibroblast-like cells (CPL-CMCs) adhering to plastic and showing stable in vitro propagation, heterogeneous stem cell expression pattern, endothelial adhesive properties and immunomodulatory profile. Due to their blood derivation and expression of CXCR4, CPL-CMCs have been suggested to be immature cells circulating in peripheral blood at quiescent state until activation by both coagulation event and inflammatory stimuli such as stromal-derived factor 1/SDF1. Expressing integrins (CD49f, CD103), vascular adhesion molecules (CD106, CD166), endoglin (CD105) and remodelling matrix enzymes (MMP2, MMP9, MMP13), they showed a transendothelial migratory potential besides multipotency. Taken together, our data suggested that a standardized, reliable and economically feasible blood product such as CPL-MB functions as an artificial stem cell niche that, under permissive conditions, originate ex vivo immature cells that could be useful for autologous stem cell-based therapies.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Leucócitos/metabolismo , Células-Tronco Multipotentes/metabolismo , Fibrina Rica em Plaquetas/metabolismo , Medicina Regenerativa/métodos , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Proteômica/métodos , Cicatrização/efeitos dos fármacos
13.
Clin Sci (Lond) ; 132(2): 255-272, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29229868

RESUMO

A sexual dimorphism in liver inflammation and repair was previously demonstrated. Its cellular dissection in the course of acute liver injury (ALI) was explored. BALB/c mice were treated with carbon tetrachloride (CCl4) by intraperitoneal injection and killed after 3, 5, and 8 days. Histological and hepatic cell population analyses were performed. The correlation between androgen receptor (AR) expression and liver recruited inflammatory cells was investigated by treatment with the AR antagonist flutamide. Additionally, patients with a diagnosis of drug induced liver injury (DILI) were included in the study, with a particular focus on gender dimorphism in circulating monocytes. A delayed resolution of necrotic damage and a higher expression of proinflammatory cytokines were apparent in male mice along with a slower recruitment of inflammatory monocytes. F4/80+CD11b+ macrophages and CD11bhighGr-1high monocytes expressed AR and were recruited later in male compared with female livers after CCl4 treatment. Moreover, CD11bhighAR+Gr-1high recruitment was negatively modulated by flutamide in males. Analysis of DILI patients showed overall a significant reduction in circulating mature monocytes compared with healthy subjects. More interestingly, male patients had higher numbers of immature monocytes compared with female patients.A stronger cytotoxic tissue response was correlated with an impaired recruitment of CD11bhighAR+Gr-1high cells and F4/80+CD11b+ macrophages in the early inflammatory phase under AR signaling. During DILI, a dimorphic immune response was apparent, characterized by a massive recruitment of monocytes to the liver both in males and females, but only in males was this recruitment sustained by a turnover of immature monocytes.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/imunologia , Modelos Animais de Doenças , Regeneração Hepática/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Animais , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Expressão Gênica/imunologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Fígado/imunologia , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Monócitos/metabolismo , Fatores Sexuais , Fatores de Tempo
14.
Int J Mol Med ; 41(3): 1213-1223, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29286095

RESUMO

Fibrillins (FBNs) are key relay molecules that form the backbone of microfibrils in elastic and non­elastic tissues. Interacting with other components of the extracellular matrix (ECM), these ubiquitous glycoproteins exert pivotal roles in tissue development, homeostasis and repair. In addition to mechanical support, FBN networks also exhibit regulatory activities on growth factor signalling, ECM formation, cell behaviour and the immune response. Consequently, mutations affecting the structure, assembly and stability of FBN microfibrils have been associated with impaired biomechanical tissue properties, altered cell­matrix interactions, uncontrolled growth factor or cytokine activation, and the development of fibrillinopathies and associated severe complications in multiple organs. Beyond a panoramic overview of structural cues of the FBN network, the present review will also describe the pathological implications of FBN disorders in the development of inflammatory and fibrotic conditions.


Assuntos
Doença , Fibrilina-1/química , Fibrilina-1/metabolismo , Animais , Elastina/metabolismo , Matriz Extracelular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais
15.
Photochem Photobiol Sci ; 16(7): 1182-1193, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28604903

RESUMO

The use of photoactivatable 8-methoxypsoralen (8-MOP) as potential focal treatment towards prostate cancer cells is proposed here. Our results, obtained on isolated DNA and DU145 cells, indicate that blue light, besides UVA, is able to activate 8-MOP. When compared to UVA, blue light irradiation led to a modulation of the extent and the types of 8-MOP-DNA damage, specially cross-links, coupled to a still valuable antiproliferative effect. Our data suggest that the proapototic activity of 8-MOP is related not only to DNA damage and reactive oxygen species generation but also to the modulation of cell signalling pathways. In particular, a different activation of p38 and p44/42 mitogen-activated protein kinases was detected depending on the light wavelengths.


Assuntos
Antineoplásicos/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Luz , Metoxaleno/farmacologia , Neoplasias da Próstata/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
16.
Int J Nanomedicine ; 11: 5041-5055, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27789941

RESUMO

Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC) on acellular aortic (AVL) and pulmonary (PVL) valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary evaluation of heart valve prosthetic functionality.


Assuntos
Valva Aórtica/citologia , Células-Tronco Multipotentes/citologia , Valva Pulmonar/citologia , Alicerces Teciduais , Animais , Células Sanguíneas/citologia , Diferenciação Celular , Células Cultivadas , Células Endoteliais , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Expressão Gênica , Implante de Prótese de Valva Cardíaca , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/fisiologia , Nanoestruturas , Sus scrofa , Suínos , Engenharia Tecidual/métodos
17.
Int J Oncol ; 48(4): 1659-69, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26847772

RESUMO

Adrenomedullin (ADM) is a regulatory peptide endowed with multiple biological effects, including the regulation of blood pressure, cell growth and innate host defence. In the present study, we demonstrated that ADM signaling could be involved in the impaired cellular differentiation of myeloid leukemia cells to mature granulocytes or monocytes by modulating RAMPs/CRLR expression, PI3K/Akt cascade and the ERK/MAPK signaling pathway. When exogenously administered to in vitro cultures of HL60 promyelocytic leukemia cells, ADM was shown to exert a strong proliferative effect with minimal upregulation in the expression level of monocyte antigen CD14. Notably, the experimental inhibition of ADM signaling with inhibitor ADM22-52 promoted a differentiative stimulation towards monocytic and granulocytic lineages. Moreover, based on the expression of CD31 relative to CD38, we hypothesized that an excess of ADM in bone marrow (BM) niche could increase the transendothelial migration of leukemia cells while any inhibitory event of ADM activity could raise cell retention in hyaluronate matrix by upregulating CD38. Taken into consideration the above evidence, we concluded that ADM and ADM22-52 could differently affect the growth of leukemia cells by autocrine/paracrine mechanisms and may have clinical relevance as biological targets for the intervention of tumor progression.


Assuntos
Adrenomedulina/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Diferenciação Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células HL-60 , Humanos , Sistema de Sinalização das MAP Quinases
18.
Am J Physiol Gastrointest Liver Physiol ; 310(6): G337-46, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26767983

RESUMO

In several gut inflammatory or cancer diseases, cell-cell interactions are compromised, and an increased cytoplasmic expression of ß-catenin is observed. Over the last decade, numerous studies provided compelling experimental evidence that the loss of cadherin-mediated cell adhesion can promote ß-catenin release and signaling without any specific activation of the canonical Wnt pathway. In the present work, we took advantage of the ability of lipofectamine-like reagent to cause a synchronous dissociation of adherent junctions in cells isolated from the rat enteric nervous system (ENS) for obtaining an in vitro model of deregulated ß-catenin signaling. Under these experimental conditions, a green fluorescent protein Wnt reporter plasmid called ΔTop_EGFP3a was successfully tested to screen ß-catenin stabilization at resting and primed conditions with exogenous Wnt3a or lipopolysaccharide (LPS). ΔTop_EGFP3a provided a reliable and strong fluorescent signal that was easily measurable and at the same time highly sensitive to modulations of Wnt signaling following Wnt3a and LPS stimulation. The reporter gene was useful to demonstrate that Wnt3a exerts a protective activity in the ENS from overstimulated Wnt signaling by promoting a downregulation of the total ß-catenin level. Based on this evidence, the use of ΔTop_EGFP3a reporter plasmid could represent a more reliable tool for the investigation of Wnt and cross-talking pathways in ENS inflammation.


Assuntos
Sistema Nervoso Entérico , Gastroenterite/genética , Genes Reporter/genética , Plasmídeos/genética , Via de Sinalização Wnt/genética , Animais , Adesão Celular/efeitos dos fármacos , Membrana Celular/patologia , Regulação para Baixo/efeitos dos fármacos , Fluorescência , Gastroenterite/fisiopatologia , Proteínas de Fluorescência Verde , Indicadores e Reagentes , Lipídeos , Lipopolissacarídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Proteína Wnt3A/farmacologia , beta Catenina/metabolismo
19.
Autoimmunity ; 49(3): 155-165, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26789595

RESUMO

Among epigenetic enzymes, histone deacetylases (HDACs) are responsible for regulating the expression of an extensive array of genes by reversible deacetylation of nuclear histones as well as a large number of non-histone proteins. Initially proposed for cancer therapy, recently the interest for HDAC inhibitors (HDACi) as orally active, safe, and anti-inflammatory agents is rising due to their ability in reducing the severity of inflammatory and autoimmune diseases. In particular, selective HDAC3, HDAC6, and HDAC8 inhibitors have been described to downregulate the expression of pro-inflammatory cytokines (TNF-α, TGF-ß, IL-1ß, and IL-6). Herein, using KB31, C2C12, and 3T3-J2 cell lines, we demonstrated that, under lipopolysaccharide-induced in vitro inflammation, HDAC3/6/8 inhibitor MC2625 and HDAC6-selective inhibitor MC2780 were effective at a concentration of 30 ng/mL to downregulate mRNA expression of pro-inflammatory cytokines (IL-1ß and IL-6) and to promote the transcription of IL-10 gene, without affecting the cell viability. Afterwards, we investigated by immunohistochemistry the activity of MC2625 and MC2780 at a concentration of 60 ng/kg animal weight to regulate silicone-triggered immune response in C57BL/6J female mice. Our findings evidenced the ability of such inhibitors to reduce host inflammation in silicone implants promoting a thickness reduction of peri-implant fibrous capsule, upregulating IL-10 expression, and reducing the production of both IL-1ß and IL-6. These results underline the potential application of MC2625 and MC2780 in inflammation-related diseases.

20.
J Neuroinflammation ; 12: 244, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26714634

RESUMO

BACKGROUND: Toll-like receptor (TLR) activation on microglia and astrocytes are key elements in neuroinflammation which accompanies a number of neurological disorders. While TLR activation on glia is well-established to up-regulate pro-inflammatory mediator expression, much less is known about how ligand engagement of one TLR may affect expression of other TLRs on microglia and astrocytes. METHODS: In the present study, we evaluated the effects of agonists for TLR2 (zymosan), TLR3 (polyinosinic-polycytidylic acid (poly(I:C)), a synthetic analogue of double-stranded RNA) and TLR4 (lipopolysaccaride (LPS)) in influencing expression of their cognate receptor as well as that of the other TLRs in cultures of rat cortical purified microglia (>99.5 %) and nominally microglia-free astrocytes. Elimination of residual microglia (a common contaminant of astrocyte cultures) was achieved by incubation with the lysosomotropic agent L-leucyl-L-leucine methyl ester (L-LME). RESULTS: Flow cytometric analysis confirmed the purity (essentially 100 %) of the obtained microglia, and up to 5 % microglia contamination of astrocytes. L-LME treatment effectively removed microglia from the latter (real-time polymerase chain reaction). The three TLR ligands robustly up-regulated gene expression for pro-inflammatory markers (interleukin-1 and interleukin-6, tumor necrosis factor) in microglia and enriched, but not purified, astrocytes, confirming cellular functionality. LPS, zymosan and poly(I:C) all down-regulated TLR4 messenger RNA (mRNA) and up-regulated TLR2 mRNA at 6 and 24 h. In spite of their inability to elaborate pro-inflammatory mediator output, the nominally microglia-free astrocytes (>99 % purity) also showed similar behaviours to those of microglia, as well as changes in TLR3 gene expression. LPS interaction with TLR4 activates downstream mitogen-activated protein kinase and nuclear factor-κB signalling pathways and subsequently causes inflammatory mediator production. The effects of LPS on TLR2 mRNA in both cell populations were antagonized by a nuclear factor-κB inhibitor. CONCLUSIONS: TLR2 and TLR4 activation in particular, in concert with microglia and astrocytes, comprise key elements in the initiation and maintenance of neuropathic pain. The finding that both homologous (zymosan) and heterologous (LPS, poly(I:C)) TLR ligands are capable of regulating TLR2 gene expression, in particular, may have important implications in understanding the relative contributions of different TLRs in neurological disorders associated with neuroinflammation.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Microglia/metabolismo , Receptores Toll-Like/biossíntese , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Técnicas de Cocultura , Regulação da Expressão Gênica , Ligantes , Microglia/efeitos dos fármacos , Poli I-C/metabolismo , Poli I-C/farmacologia , Ratos , Receptores Toll-Like/agonistas , Zimosan/metabolismo , Zimosan/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA