Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 132024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980300

RESUMO

Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades' radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA , Radiação Ionizante , Tardígrados , Transcriptoma , Tardígrados/genética , Tardígrados/metabolismo , Animais , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Dano ao DNA , Tolerância a Radiação/genética
2.
Mol Ther ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39044427

RESUMO

Fetal hemoglobin (HbF) reactivation expression through CRISPR-Cas9 is a promising strategy for the treatment of sickle cell disease (SCD). Here, we describe a genome editing strategy leading to reactivation of HbF expression by targeting the binding sites (BSs) for the lymphoma-related factor (LRF) repressor in the γ-globin promoters. CRISPR-Cas9 treatment in healthy donor (HD) and patient-derived HSPCs resulted in a high frequency of LRF BS disruption and potent HbF synthesis in their erythroid progeny. LRF BS disruption did not impair HSPC engraftment and differentiation but was more efficient in SCD than in HD cells. However, SCD HSPCs showed a reduced engraftment and a myeloid bias compared with HD cells. We detected off-target activity and chromosomal rearrangements, particularly in SCD samples (likely because of the higher overall editing efficiency) but did not impact the target gene expression and HSPC engraftment and differentiation. Transcriptomic analyses showed that the editing procedure results in the up-regulation of genes involved in DNA damage and inflammatory responses, which was more evident in SCD HSPCs. This study provides evidence of efficacy and safety for an editing strategy based on HbF reactivation and highlights the need of performing safety studies in clinically relevant conditions, i.e., in patient-derived HSPCs.

4.
Stem Cell Res Ther ; 15(1): 10, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167524

RESUMO

BACKGROUND: Beyond the observed alterations in cellular structure and mitochondria, the mechanisms linking rare genetic mutations to the development of heart failure in patients affected by desmin mutations remain unclear due in part, to the lack of relevant human cardiomyocyte models. METHODS: To shed light on the role of mitochondria in these mechanisms, we investigated cardiomyocytes derived from human induced pluripotent stem cells carrying the heterozygous DESE439K mutation that were either isolated from a patient or generated by gene editing. To increase physiological relevance, cardiomyocytes were either cultured on an anisotropic micropatterned surface to obtain elongated and aligned cardiomyocytes, or as a cardiac spheroid to create a micro-tissue. Moreover, when applicable, results from cardiomyocytes were confirmed with heart biopsies of suddenly died patient of the same family harboring DESE439K mutation, and post-mortem heart samples from five control healthy donors. RESULTS: The heterozygous DESE439K mutation leads to dramatic changes in the overall cytoarchitecture of cardiomyocytes, including cell size and morphology. Most importantly, mutant cardiomyocytes display altered mitochondrial architecture, mitochondrial respiratory capacity and metabolic activity reminiscent of defects observed in patient's heart tissue. Finally, to challenge the pathological mechanism, we transferred normal mitochondria inside the mutant cardiomyocytes and demonstrated that this treatment was able to restore mitochondrial and contractile functions of cardiomyocytes. CONCLUSIONS: This work highlights the deleterious effects of DESE439K mutation, demonstrates the crucial role of mitochondrial abnormalities in the pathophysiology of desmin-related cardiomyopathy, and opens up new potential therapeutic perspectives for this disease.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Desmina/genética , Desmina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cardiomiopatias/metabolismo , Mutação/genética , Miócitos Cardíacos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA