Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 59(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37893465

RESUMO

Diabetes mellitus is a chronic disease that, untreated or poorly controlled, can lead to serious complications, reducing life expectancy and quality. Diabetic patients are more likely to develop infections, including many common infections, but also pathognomonic ones such as emphysematous pyelonephritis, malignant otitis externa, mucormycosis and Fournier's gangrene. Considering the fact that diabetic patients experience more frequently urinary tract infections (UTIs) with a worse prognosis than non-diabetic people, we conducted a review study based on data in the literature, following the particularities of UTIs in this group of patients, the risk factors, the mechanisms involved and the challenges in their management. The findings highlight that UTI in diabetic patients have some particularities, including a more frequent evolution to bacteremia, increased hospitalizations, and elevated rates of recurrence and mortality than non-diabetic patients. The possible risk factors identified seem to be female gender, pregnancy, older age, UTI in the previous six months, poor glycemic control and duration of diabetes. The mechanisms involved are related to glucosuria and bladder dysfunction, factors related to bacterial strains and host response. The bacterial strains involved in UTIs in diabetic patients and their antibiotic susceptibility profile are, with some exceptions, similar to those in non-diabetic people; however, the antimicrobial agents should be carefully chosen and the duration of the treatment should be as those required for a complicated UTI. The data related to the risk of developing UTIs in patients treated with SGLT-2 inhibitors, a new class of oral hypoglycaemic agents with cardiovascular and renal benefits, are controversial; overall, it was evidenced that UTIs occurred at the initiation of the treatment, recurrent infection was uncommon and the majority of UTIs responded to treatment with standard antibiotics. Moreover, interruption or discontinuation of SGLT-2 inhibitor as a result of UTI was rare and SGLT-2 inhibitors did not increase the risk of severe infections such as urosepsis and pyelonephritis.


Assuntos
Diabetes Mellitus , Pielonefrite , Inibidores do Transportador 2 de Sódio-Glicose , Infecções Urinárias , Gravidez , Humanos , Feminino , Infecções Urinárias/complicações , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/epidemiologia , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/tratamento farmacológico , Pielonefrite/complicações , Pielonefrite/tratamento farmacológico , Antibacterianos/uso terapêutico
2.
Biomedicines ; 11(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979831

RESUMO

Considering that microbial resistance to antibiotics is becoming an increasingly widespread problem, burn management, which usually includes the use of topical antimicrobial dressings, is still facing difficulties regarding their efficiency to ensure rapid healing. In this context, the main objective of this research is to include new oxytetracycline derivatives in polymeric-film-type dressings for the treatment of wounds caused by experimentally induced burns in rats. The structural and physico-chemical properties of synthesized oxytetracycline derivatives and the corresponding membranes were analyzed by FT-IR and MS spectroscopy, swelling ability and biodegradation capacity. In vitro antimicrobial activity using Gram-positive and Gram-negative bacterial strains and pathogenic yeasts, along with an in vivo study of a burn wound model induced in Wistar rats, was also analyzed. The newly obtained polymeric films, namely chitosan-oxytetracycline derivative membranes, showed good antimicrobial activity noticed in the tested strains, a membrane swelling ratio (MSR) of up to 1578% in acidic conditions and a biodegradation rate of up to 15.7% on day 7 of testing, which are important required characteristics for the tissue regeneration process, after the production of a burn. The in vivo study proved that chitosan-derived oxytetracycline membranes showed also improved healing effects which contributes to supporting the idea of using them for the treatment of wounds caused by burns.

3.
Pharmaceutics ; 14(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36297600

RESUMO

The study aim was to develop and validate a high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) method to simultaneously determine glibenclamide (Gli) and silymarin (Sil) released from chitosan (CS) microparticles in aqueous solutions. The CS microparticles were synthesized using an ionic gelation method, and their morphology, swelling degree, encapsulation efficiency and active substance release were investigated. Gli and Sil were loaded in different concentrations, and their identification and quantification were performed using the HPLC-ESI-MS method, which was further validated. The drugs' characteristic m/z was found in the higher intensity of retention time (Rt) (Gli, 8.909 min; Sil A, 5.41 min; and Sil B, 5.66 min). The method selectivity and precision are very good, and the blank solution proved no interference. The linearity of the answer function is very good for Sil A (R2 = 1), Sil B (R2 = 0.9998) and Gli (R2 = 0.9991). For Gli, we obtained a limit of detection (LOD) = 0.038 mg/mL and limit of quantification (LOQ) = 1.275 mg/mL; for Sil A, a LOD = 0.285 mg/mL and LOQ = 0.95 mg/mL; and for Sil B, a LOD = 0.045 mg/mL and LOQ = 0.15 mg/mL. A high-resolution HPLC-ESI-MS method was developed and validated, which allowed the simultaneous determination of Gli and Sil loaded in CS microparticles, in a concentration range of 0.025-1 mg/mL.

4.
Polymers (Basel) ; 14(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35745886

RESUMO

Lately, in the world of medicine, the use of polymers for the development of innovative therapies seems to be a major concern among researchers. In our case, as a continuation of the research that has been developed so far regarding obtaining new isoniazid (INH) derivatives for tuberculosis treatment, this work aimed to test the ability of the encapsulation method to reduce the toxicity of the drug, isoniazid and its new derivatives. To achieve this goal, the following methods were applied: a structural confirmation of isoniazid derivatives using LC-HRMS/MS; the obtaining of microparticles based on polymeric support; the determination of their loading and biodegradation capacities; in vitro biocompatibility using MTT cell viability assays; and, last but not least, in vivo toxicological screening for the determination of chronic toxicity in laboratory mice, including the performance of a histopathological study and testing for liver enzymes. The results showed a significant reduction in tissue alterations, the disappearance of cell necrosis and microvesicular steatosis areas and lower values of the liver enzymes TGO, TGP and alkaline phosphatase when using encapsulated forms of drugs. In conclusion, the encapsulation of INH and INH derivatives with chitosan had beneficial effects, suggesting a reduction in hepatotoxicity and, therefore, the achievement of the aim of this paper.

5.
Molecules ; 26(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204251

RESUMO

Despite the advantages presented by synthetic polymers such as strength and durability, the lack of biodegradability associated with the persistence in the environment for a long time turned the attention of researchers to natural polymers. Being biodegradable, biopolymers proved to be extremely beneficial to the environment. At present, they represent an important class of materials with applications in all economic sectors, but also in medicine. They find applications as absorbers, cosmetics, controlled drug delivery, tissue engineering, etc. Chitosan is one of the natural polymers which raised a strong interest for researchers due to some exceptional properties such as biodegradability, biocompatibility, nontoxicity, non-antigenicity, low-cost and numerous pharmacological properties as antimicrobial, antitumor, antioxidant, antidiabetic, immunoenhancing. In addition to this, the free amino and hydroxyl groups make it susceptible to a series of structural modulations, obtaining some derivatives with different biomedical applications. This review approaches the physico-chemical and pharmacological properties of chitosan and its derivatives, focusing on the antimicrobial potential including mechanism of action, factors that influence the antimicrobial activity and the activity against resistant strains, topics of great interest in the context of the concern raised by the available therapeutic options for infections, especially with resistant strains.


Assuntos
Quitosana/química , Quitosana/isolamento & purificação , Quitosana/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Materiais Biocompatíveis/química , Biopolímeros/química , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas/química , Polímeros/química
6.
Polymers (Basel) ; 13(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920998

RESUMO

Natural compounds have been used as wound-healing promoters and are also present in today's clinical proceedings. In this research, different natural active components such as propolis, Manuka honey, insulin, L-arginine, and Calendula officinalis infusion were included into hyaluronic acid/poly(ethylene)oxide-based electrospun nanofiber membranes to design innovative wound-dressing biomaterials. Morphology and average fiber diameter were analyzed by scanning electron microscopy. Chemical composition was proved by Fourier transform infrared spectroscopy, which indicated successful incorporation of the active components. The nanofiber membranes with propolis and Calendula officinalis showed best antioxidant activity, cytocompatibility, and antimicrobial properties against pathogen strains Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa and had an average diameter of 217 ± 19 nm with smooth surface aspect. Water vapor transmission rate was in agreement with the range suitable for preventing infections or wound dehydration (~5000 g/m2 24 h). Therefore, the developed hyaluronic acid/poly(ethylene)oxide nanofibers with additional natural components showed favorable features for clinical use as wound dressings.

7.
Rev Med Chir Soc Med Nat Iasi ; 120(2): 439-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27483732

RESUMO

UNLABELLED: L-Arginine is an a-amino acid which plays important roles in different diseases or processes, such as Alzheimer disease, inflammatory process, healing and tissue regeneration and it also could be useful as an anti-atherosclerotic agent. AIM: Considering the large amount of studies on the beneficial effects of different antioxidants, this paper is focused on the evaluation of the antioxidant potential of some imine derivatives, synthesized by the authors and described in a previous article. MATERIAL AND METHODS: The evaluation of the antioxidant power was performed using phosphomolydenum-reducing antioxidant power (PRAP) and ferric reducing antioxidant power (FRAP) assays, tests described in the literature and which are used with some minor modifications. RESULTS: It was found that most of the imine derivatives are more active than the L-Arginine in the PPAP and FRAP assays. The most active derivative was the compound obtained by condensation of L-arginine with 2,3-dihydroxybenzaldehyde (2k) and 2-nitrobenzaldehyde (2g). CONCLUSIONS: Following the described protocol, some imine derivatives of L-arginine were evaluated in terms of antioxidant potential using in vitro methods. The most favorable influence was obtained by the aromatic substitution with nitro and hydroxyl, the corresponding derivatives being the most active derivatives compared to L-arginine.


Assuntos
Antioxidantes/farmacologia , Arginina/síntese química , Benzaldeídos/síntese química , Catecóis/síntese química , Avaliação Pré-Clínica de Medicamentos , Iminas/farmacologia , Antioxidantes/síntese química , Avaliação Pré-Clínica de Medicamentos/métodos , Iminas/síntese química , Técnicas In Vitro
8.
Rev Med Chir Soc Med Nat Iasi ; 119(2): 579-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26204670

RESUMO

Diabetes mellitus is a major health problem due to its increasing prevalence and life-threatening complications. Antidiabetic sulfonylureas represent the first-line drugs in type 2 diabetes even though the most common associated risk is pharmacologically-induced hypoglycemia. In the development of this side effect are involved several factors including the pharmacokinetic and pharmacodynamic profile of the drug, patient age and behavior, hepatic or renal dysfunctions, or other drugs associated with a high risk of interactions. If all these are controlled, the risk-benefit balance can be equal to other oral antidiabetic drugs.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia/induzido quimicamente , Hipoglicemiantes/efeitos adversos , Compostos de Sulfonilureia/efeitos adversos , Clorpropamida/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Gliclazida/efeitos adversos , Glipizida/efeitos adversos , Glibureto/efeitos adversos , Humanos , Hipoglicemiantes/administração & dosagem , Fatores de Risco , Compostos de Sulfonilureia/administração & dosagem , Tolbutamida/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA