Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38610313

RESUMO

Simultaneous localisation and mapping (SLAM) is crucial in mobile robotics. Most visual SLAM systems assume that the environment is static. However, in real life, there are many dynamic objects, which affect the accuracy and robustness of these systems. To improve the performance of visual SLAM systems, this study proposes a dynamic visual SLAM (SEG-SLAM) system based on the orientated FAST and rotated BRIEF (ORB)-SLAM3 framework and you only look once (YOLO)v5 deep-learning method. First, based on the ORB-SLAM3 framework, the YOLOv5 deep-learning method is used to construct a fusion module for target detection and semantic segmentation. This module can effectively identify and extract prior information for obviously and potentially dynamic objects. Second, differentiated dynamic feature point rejection strategies are developed for different dynamic objects using the prior information, depth information, and epipolar geometry method. Thus, the localisation and mapping accuracy of the SEG-SLAM system is improved. Finally, the rejection results are fused with the depth information, and a static dense 3D mapping without dynamic objects is constructed using the Point Cloud Library. The SEG-SLAM system is evaluated using public TUM datasets and real-world scenarios. The proposed method is more accurate and robust than current dynamic visual SLAM algorithms.

2.
Sensors (Basel) ; 23(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38067967

RESUMO

Simultaneous location and mapping (SLAM) technology is key in robot autonomous navigation. Most visual SLAM (VSLAM) algorithms for dynamic environments cannot achieve sufficient positioning accuracy and real-time performance simultaneously. When the dynamic object proportion is too high, the VSLAM algorithm will collapse. To solve the above problems, this paper proposes an indoor dynamic VSLAM algorithm called YDD-SLAM based on ORB-SLAM3, which introduces the YOLOv5 object detection algorithm and integrates deep information. Firstly, the objects detected by YOLOv5 are divided into eight subcategories according to their motion characteristics and depth values. Secondly, the depth ranges of the dynamic object and potentially dynamic object in the moving state in the scene are calculated. Simultaneously, the depth value of the feature point in the detection box is compared with that of the feature point in the detection box to determine whether the point is a dynamic feature point; if it is, the dynamic feature point is eliminated. Further, multiple feature point optimization strategies were developed for VSLAM in dynamic environments. A public data set and an actual dynamic scenario were used for testing. The accuracy of the proposed algorithm was significantly improved compared to that of ORB-SLAM3. This work provides a theoretical foundation for the practical application of a dynamic VSLAM algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA