Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mult Scler ; 27(8): 1222-1229, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32975472

RESUMO

BACKGROUND: Hand dexterity dysfunction is a key feature of disability in people with progressive multiple sclerosis (PMS). It underlies corticospinal tract (CST) and cerebellar integrity, as well as disruption of cortical networks, which are hardly assessed by standard techniques. Transcranial magnetic stimulation is a promising tool for evaluating the integrity of intracortical motor pathways. OBJECTIVE: To investigate neurophysiological correlates of motor hand impairment in PMS. METHODS: Antero-posterior (AP) stimulation of the primary motor cortex activates the CST indirectly through polysynaptic pathways, while a direct CST activation occurs with latero-medial (LM) directed current. Thirty PMS and 15 healthy controls underwent dominant hand motor evoked potentials (MEP) using AP and LM-directed stimulation, and a clinical assessment of dexterity (nine-hole peg test) and strength (MRC scale, grip and pinch). RESULTS: PMS with AP-LM latency difference 2.5 standard deviation above the mean of controls (33%) showed worse dexterity but no difference in upper limb strength. Accordingly, AP-LM latency shortening predicted dexterity (R2 = 0.538, p < 0.001), but not strength impairment. On the contrary, absolute MEP latencies only correlated with strength (grip: R2 = 0.381, p = 0.014; MRC: R2 = 0.184, p = 0.041). CONCLUSION: AP-LM latency shortening may be used to assess the integrity polysynaptic intracortical networks implicated in dexterity impairment.


Assuntos
Córtex Motor , Esclerose Múltipla , Potencial Evocado Motor , Mãos , Humanos , Tratos Piramidais , Estimulação Magnética Transcraniana
2.
Sensors (Basel) ; 20(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138057

RESUMO

Multiple sclerosis (MS) is characterized by gait impairments and severely impacts the quality of life. Technological advances in biomechanics offer objective assessments of gait disabilities in clinical settings. Here we employed wearable sensors to measure electromyography (EMG) and body acceleration during walking and to quantify the altered gait pattern between people with progressive MS (PwPMS) and healthy controls (HCs). Forty consecutive patients attending our department as in-patients were examined together with fifteen healthy controls. All subjects performed the timed 10 min walking test (T10MW) using a wearable accelerator and 8 electrodes attached to bilateral thighs and legs so that body acceleration and EMG activity were recorded. The T10MWs were recorded under three conditions: standard (wearing shoes), reduced grip (wearing socks) and increased cognitive load (backward-counting dual-task). PwPMS showed worse kinematics of gait and increased muscle coactivation than controls at both the thigh and leg levels. Both reduced grip and increased cognitive load caused a reduction in the cadence and velocity of the T10MW, which were correlated with one another. A higher coactivation index at the thigh level of the more affected side was positively correlated with the time of the T10MW (r = 0.5, p < 0.01), Expanded Disability Status Scale (EDSS) (r = 0.4, p < 0.05), and negatively correlated with the cadence (r = -0.6, p < 0.001). Our results suggest that excessive coactivation at the thigh level is the major determinant of the gait performance as the disease progresses. Moreover, demanding walking conditions do not influence gait in controls but deteriorate walking performances in PwPMS, thus those conditions should be prevented during hospital examinations as well as in homecare environments.


Assuntos
Vestuário , Análise da Marcha , Esclerose Múltipla , Caminhada , Aceleração , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico , Qualidade de Vida
3.
Dalton Trans ; 42(37): 13537-45, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23900430

RESUMO

Synthesis and photophysical characterisation of [Ln(hfac)3DPEPO] complexes (with Ln = Eu, Tb, Yb, Nd, Gd) has been carried out to investigate the factors responsible for the variation in total photoluminescence quantum yield within this family of emissive lanthanide complexes. Electronic absorption and emission spectroscopy, in conjunction with DFT calculations of the excited state of the Eu complex, elucidate the role of each ligand in the sensitisation of the lanthanide through the antenna effect. The X-ray crystal structure of [Gd(hfac)3DPEPO] has been determined and shows an 8-coordinate environment around the Gd and a ten-membered chelate ring involving the DPEPO ligand. Total photoluminescence quantum yields were measured to be 6%, 1% and 2% for Ln = Tb, Nd and Yb, respectively, in comparison with around 80% for Ln = Eu. The lower quantum yield for Nd and Yb, compared with Eu, can be attributed to more efficient quenching of the excited Ln state by high-energy oscillations within the ligands, whereas the lower quantum yield for Tb is assigned to a combination of poor energy transfer from the ligand excited state to the Tb and longer radiative lifetime.


Assuntos
Elementos da Série dos Lantanídeos/química , Luminescência , Compostos Organometálicos/síntese química , Teoria Quântica , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/química , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA