Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Small Methods ; : e2301229, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528393

RESUMO

The charge-transfer (CT) interactions between organic compounds are reflected in the (opto)electronic properties. Determining and visualizing crystal structures of CT complexes are essential for the design of functional materials with desirable properties. Complexes of pyranine (PYR), methyl viologen (MV), and their derivatives are the most studied water-based CT complexes. Nevertheless, very few crystal structures of CT complexes have been reported so far. In this study, the structures of two PYRs-MVs CT crystals and a map of the noncovalent interactions using 3D electron diffraction (3DED) are reported. Physical properties, e.g., band structure, conductivity, and electronic spectra of the CT complexes and their crystals are investigated and compared with a range of methods, including solid and liquid state spectroscopies and highly accurate quantum chemical calculations based on density functional theory (DFT). The combination of 3DED, spectroscopy, and DFT calculation can provide important insight into the structure-property relationship of crystalline CT materials, especially for submicrometer-sized crystals.

2.
PLoS One ; 16(7): e0253849, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34264994

RESUMO

BACKGROUND: Loss of mitochondrial function contributes to fatigue, exercise intolerance and muscle weakness, and is a key factor in the disability that develops with age and a wide variety of chronic disorders. Here, we describe the impact of a first-in-class cardiolipin-binding compound that is targeted to mitochondria and improves oxidative phosphorylation capacity (Elamipretide, ELAM) in a randomized, double-blind, placebo-controlled clinical trial. METHODS: Non-invasive magnetic resonance and optical spectroscopy provided measures of mitochondrial capacity (ATPmax) with exercise and mitochondrial coupling (ATP supply per O2 uptake; P/O) at rest. The first dorsal interosseous (FDI) muscle was studied in 39 healthy older adult subjects (60 to 85 yrs of age; 46% female) who were enrolled based on the presence of poorly functioning mitochondria. We measured volitional fatigue resistance by force-time integral over repetitive muscle contractions. RESULTS: A single ELAM dose elevated mitochondrial energetic capacity in vivo relative to placebo (ΔATPmax; P = 0.055, %ΔATPmax; P = 0.045) immediately after a 2-hour infusion. No difference was found on day 7 after treatment, which is consistent with the half-life of ELAM in human blood. No significant changes were found in resting muscle mitochondrial coupling. Despite the increase in ATPmax there was no significant effect of treatment on fatigue resistance in the FDI. CONCLUSIONS: These results highlight that ELAM rapidly and reversibly elevates mitochondrial capacity after a single dose. This response represents the first demonstration of a pharmacological intervention that can reverse mitochondrial dysfunction in vivo immediately after treatment in aging human muscle.


Assuntos
Trifosfato de Adenosina , Idoso , Método Duplo-Cego , Feminino , Humanos , Masculino , Mitocôndrias Musculares/metabolismo , Fosforilação Oxidativa , Adulto Jovem
3.
Physiol Rep ; 9(11): e14887, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34110707

RESUMO

Endurance training (ET) is recommended for the elderly to improve metabolic health and aerobic capacity. However, ET-induced adaptations may be suboptimal due to oxidative stress and exaggerated inflammatory response to ET. The natural antioxidant and anti-inflammatory dietary supplement astaxanthin (AX) has been found to increase endurance performance among young athletes, but limited investigations have focused on the elderly. We tested a formulation of AX in combination with ET in healthy older adults (65-82 years) to determine if AX improves metabolic adaptations with ET, and if AX effects are sex-dependent. Forty-two subjects were randomized to either placebo (PL) or AX during 3 months of ET. Specific muscle endurance was measured in ankle dorsiflexors. Whole body exercise endurance and fat oxidation (FATox) was assessed with a graded exercise test (GXT) in conjunction with indirect calorimetry. Results: ET led to improved specific muscle endurance only in the AX group (Pre 353 ± 26 vs. Post 472 ± 41 contractions), and submaximal GXT duration improved in both groups (PL 40.8 ± 9.1% and AX 41.1 ± 6.3%). The increase in FATox at lower intensity after ET was greater in AX (PL 0.23 ± 0.15 g vs. AX 0.76 ± 0.18 g) and was associated with reduced carbohydrate oxidation and increased exercise efficiency in males but not in females.


Assuntos
Antioxidantes/farmacologia , Suplementos Nutricionais , Exercício Físico , Adaptação Fisiológica/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Calorimetria Indireta , Exercício Físico/fisiologia , Teste de Esforço/efeitos dos fármacos , Feminino , Humanos , Masculino , Resistência Física/efeitos dos fármacos , Fatores Sexuais , Xantofilas/farmacologia
4.
Aging Cell ; 19(10): e13213, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32779818

RESUMO

The effects of two different mitochondrial-targeted drugs, SS-31 and NMN, were tested on Old mouse hearts. After treatment with the drugs, individually or Combined, heart function was examined by echocardiography. SS-31 partially reversed an age-related decline in diastolic function while NMN fully reversed an age-related deficiency in systolic function at a higher workload. Metabolomic analysis revealed that both NMN and the Combined treatment increased nicotinamide and 1-methylnicotinamide levels, indicating greater NAD+ turnover, but only the Combined treatment resulted in significantly greater steady-state NAD(H) levels. A novel magnetic resonance spectroscopy approach was used to assess how metabolite levels responded to changing cardiac workload. PCr/ATP decreased in response to increased workload in Old Control, but not Young, hearts, indicating an age-related decline in energetic capacity. Both drugs were able to normalize the PCr/ATP dynamics. SS-31 and NMN treatment also increased mitochondrial NAD(P)H production under the higher workload, while only NMN increased NAD+ in response to increased work. These measures did not shift in hearts given the Combined treatment, which may be owed to the enhanced NAD(H) levels in the resting state after this treatment. Overall, these results indicate that both drugs are effective at restoring different aspects of mitochondrial and heart health and that combining them results in a synergistic effect that rejuvenates Old hearts and best recapitulates the Young state.


Assuntos
Coração/efeitos dos fármacos , Mononucleotídeo de Nicotinamida/farmacologia , Oligopeptídeos/farmacologia , Fatores Etários , Animais , Coração/diagnóstico por imagem , Coração/fisiologia , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , NAD/metabolismo
5.
JCI Insight ; 5(5)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32161192

RESUMO

The maintenance of functional independence is the top priority of patients with chronic kidney disease (CKD). Defects in mitochondrial energetics may compromise physical performance and independence. We investigated associations of the presence and severity of kidney disease with in vivo muscle energetics and the association of muscle energetics with physical performance. We performed measures of in vivo leg and hand muscle mitochondrial capacity (ATPmax) and resting ATP turnover (ATPflux) using 31phosphorus magnetic resonance spectroscopy and oxygen uptake (O2 uptake) by optical spectroscopy in 77 people (53 participants with CKD and 24 controls). We measured physical performance using the 6-minute walk test. Participants with CKD had a median estimated glomerular filtration rate (eGFR) of 33 ml/min per 1.73 m2. Participants with CKD had a -0.19 mM/s lower leg ATPmax compared with controls but no difference in hand ATPmax. Resting O2 uptake was higher in CKD compared with controls, despite no difference in ATPflux. ATPmax correlated with eGFR and serum bicarbonate among participants with GFR <60. ATPmax of the hand and leg correlated with 6-minute walking distance. The presence and severity of CKD associate with muscle mitochondrial capacity. Dysfunction of muscle mitochondrial energetics may contribute to reduced physical performance in CKD.


Assuntos
Metabolismo Energético , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Desempenho Físico Funcional , Insuficiência Renal Crônica/metabolismo , Trifosfato de Adenosina/metabolismo , Idoso , Feminino , Taxa de Filtração Glomerular , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio/fisiologia , Insuficiência Renal Crônica/fisiopatologia , Índice de Gravidade de Doença
6.
Am J Clin Nutr ; 110(4): 805-813, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31204775

RESUMO

BACKGROUND: A metabolic adaptation, defined as an increase in energy expenditure (EE) beyond what is expected with weight gain during overfeeding (OF), has been reported but also refuted. Much of the inconsistency stems from the difficulty in conducting large, well-controlled OF studies in humans. OBJECTIVES: The primary aim of this study was to determine whether a metabolic adaptation to OF exists and if so, attenuates weight gain. METHODS: Thirty-five young adults consumed 40% above their baseline energy requirements for 8 wk, and sleeping metabolic rate (SMR) and 24-h sedentary energy expenditure (24h-EE) were measured before and after OF. Subjects were asked to return for a 6-mo post-OF follow-up visit to measure body weight, body composition, and physical activity. RESULTS: After adjusting for gains in fat-free mass and fat mass, SMR increased by 43 ± 123 kcal/d more than expected (P = 0.05) and 24h-EE by 23 ± 139 kcal/d (P = 0.34), indicating an overall lack of metabolic adaptation during OF despite a wide variability in the response. Among the 30 subjects who returned for the 6-mo follow-up visit, those who had a lower-than-predicted SMR (basal EE) retained more of the fat gained during OF. Likewise, subjects displaying a higher-than-predicted sedentary 24h-EE lost significantly more fat during the 6-mo follow-up. CONCLUSIONS: Metabolic adaptation to OF was on average very small but variable between subjects, revealing "thrifty" or "spendthrift" metabolic phenotypes related to body weight loss 6 mo later. This trial was registered at clinicaltrials.gov as NCT01672632.


Assuntos
Adaptação Fisiológica/fisiologia , Peso Corporal/efeitos dos fármacos , Ingestão de Energia , Metabolismo Energético/fisiologia , Adulto , Peso Corporal/fisiologia , Dieta , Exercício Físico , Feminino , Humanos , Masculino , Mitocôndrias/metabolismo , Fatores de Tempo , Adulto Jovem
7.
ACS Nano ; 13(5): 5344-5355, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30973699

RESUMO

Features of the surface plasmon from macroscopic materials emerge in molecular systems, but differentiating collective excitations from single-particle excitations in molecular systems remains elusive. The rich interactions between single-particle electron-hole and collective electron excitations produce phenomena related to the chemical physics aspects within the atomic array. We study the plasmonic properties of atomic arrays of noble (Au, Ag, and Cu) and transition-metal (Pd, Pt) homonuclear chains using time-dependent density functional theory and their Kohn-Sham transition contributions. The response to the electromagnetic radiation is related to both the geometry-dependent confinement of sp-valence electrons and the energy position of d-electrons in the different atomic species and the hybridization between d and sp electrons. It is possible to tune the position of the plasmon resonance, split it into several peaks, and eventually achieve broadband absorption of radiation. Arrays of mixed noble and transition-metal chains may have strongly attenuated plasmonic behavior. The collective nature of the excitations is ascertained using their Kohn-Sham transition contributions. To manipulate the plasmonic response and achieve the desired properties for broad applications, it is vital to understand the origins of these phenomena in atomic chains and their arrays.

8.
J Cachexia Sarcopenia Muscle ; 9(5): 826-833, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30259703

RESUMO

BACKGROUND: Building both strength and endurance has been a challenge in exercise training in the elderly, but dietary supplements hold promise as agents for improving muscle adaptation. Here, we test a formulation of natural products (AX: astaxanthin, 12 mg and tocotrienol, 10 mg and zinc, 6 mg) with both anti-inflammatory and antioxidant properties in combination with exercise. We conducted a randomized, double-blind, placebo-controlled study of elderly subjects (65-82 years) on a daily oral dose with interval walking exercise on an incline treadmill. METHODS: Forty-two subjects were fed AX or placebo for 4 months and trained 3 months (3×/week for 40-60 min) with increasing intervals of incline walking. Strength was measured as maximal voluntary force (MVC) in ankle dorsiflexion exercise, and tibialis anterior muscle size (cross-sectional area, CSA) was determined from magnetic resonance imaging. RESULTS: Greater endurance (exercise time in incline walking, >50%) and distance in 6 min walk (>8%) accompanied training in both treatments. Increases in MVC by 14.4% (±6.2%, mean ± SEM, P < 0.02, paired t-test), CSA by 2.7% (±1.0%, P < 0.01), and specific force by 11.6% (MVC/CSA, ±6.0%, P = 0.05) were found with AX treatment, but no change was evident in these properties with placebo treatment (MVC, 2.9% ± 5.6%; CSA, 0.6% ± 1.2%; MVC/CSA, 2.4 ± 5.7%; P > 0.6 for all). CONCLUSIONS: The AX formulation improved muscle strength and CSA in healthy elderly in addition to the elevation in endurance and walking distance found with exercise training alone. Thus, the AX formulation in combination with a functional training programme uniquely improved muscle strength, endurance, and mobility in the elderly.


Assuntos
Exercício Físico , Avaliação Geriátrica , Força Muscular , Resistência Física , Caminhada , Idoso , Idoso de 80 Anos ou mais , Animais , Índice de Massa Corporal , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Força Muscular/efeitos dos fármacos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Condicionamento Físico Animal , Xantofilas/administração & dosagem
9.
Pract Radiat Oncol ; 8(5): 317-323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29907508

RESUMO

PURPOSE: Common performance metrics for outpatient clinics define the time between patient arrival and entry into an examination room as "waiting time." Time spent in the room is considered processing time. This characterization systematically ignores time spent in the examination room waiting for service. If these definitions are used, performance will consistently understate total waiting times and overstate processing times. Correcting such errors will provide a better understanding of system behavior. METHODS AND MATERIALS: In a radiation oncology service in an urban academic clinic, we collected data from a patient management system for 84 patients with 4 distinct types of visits: consultations, follow-ups, on-treatment visits, and nurse visits. Examination room entry and exit times were collected with a real-time location system for relevant care team members. Novel metrics of clinic performance were created, including the ratio of face time (ie, time during which the patient is with a practitioner) to total cycle time, which we label face-time efficiency. Attending physician interruptions occurred when the attending is called out of the room during a patient visit, and coordination-related delays are defined as waits for another team member. RESULTS: Face-time efficiency levels for consults, follow-ups, on-treatment visits, and nurse visits were 30.1%, 22.9%, 33.0%, and 25.6%, respectively. Attending physician interruptions averaged 6.7 minutes per patient. If these interruptions were eliminated, face-time efficiencies would rise to 33.2%, 29.2%, 34.4%, and 25.6%, respectively. Eliminating all coordination-related delays would increase these values to 41.3%, 38.9%, 54.7%, and 38.7%, respectively. CONCLUSIONS: A real-time location system can be used to augment a patient management system and automate data collection to provide improved descriptions of clinic performance.


Assuntos
Instituições de Assistência Ambulatorial/organização & administração , Eficiência Organizacional , Neoplasias/radioterapia , Radioterapia (Especialidade)/organização & administração , Instituições de Assistência Ambulatorial/estatística & dados numéricos , Humanos , Equipe de Assistência ao Paciente/organização & administração , Satisfação do Paciente , Radioterapia (Especialidade)/estatística & dados numéricos , Fatores de Tempo , Gerenciamento do Tempo
10.
Diabetologia ; 61(2): 466-475, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29150696

RESUMO

AIMS/HYPOTHESES: Reduced mitochondrial capacity in skeletal muscle has been observed in obesity and type 2 diabetes. In humans, the aetiology of this abnormality is not well understood but the possibility that it is secondary to the stress of nutrient overload has been suggested. To test this hypothesis, we examined whether sustained overfeeding decreases skeletal muscle mitochondrial content or impairs function. METHODS: Twenty-six healthy volunteers (21 men, 5 women, age 25.3 ± 4.5 years, BMI 25.5 ± 2.4 kg/m2) underwent a supervised protocol consisting of 8 weeks of high-fat overfeeding (40% over baseline energy requirements). Before and after overfeeding, we measured systemic fuel oxidation by indirect calorimetry and performed skeletal muscle biopsies to measure mitochondrial gene expression, content and function in vitro. Mitochondrial function in vivo was measured by 31P NMR spectroscopy. RESULTS: With overfeeding, volunteers gained 7.7 ± 1.8 kg (% change 9.8 ± 2.3). Overfeeding increased fasting NEFA, LDL-cholesterol and insulin concentrations. Indirect calorimetry showed a shift towards greater reliance on lipid oxidation. In skeletal muscle tissue, overfeeding increased ceramide content, lipid droplet content and perilipin-2 mRNA expression. Phosphorylation of AMP-activated protein kinase was decreased. Overfeeding increased mRNA expression of certain genes coding for mitochondrial proteins (CS, OGDH, CPT1B, UCP3, ANT1). Despite the stress of nutrient overload, mitochondrial content and mitochondrial respiration in muscle did not change after overfeeding. Similarly, overfeeding had no effect on either the emission of reactive oxygen species or on mitochondrial function in vivo. CONCLUSIONS/INTERPRETATION: Skeletal muscle mitochondria are significantly resilient to nutrient overload. The lower skeletal muscle mitochondrial oxidative capacity in human obesity is likely to be caused by reasons other than nutrient overload per se. TRIAL REGISTRATION: ClinicalTrials.gov NCT01672632.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Adulto , Biópsia , LDL-Colesterol/sangue , Dieta Hiperlipídica , Metabolismo Energético/fisiologia , Ácidos Graxos não Esterificados/sangue , Feminino , Voluntários Saudáveis , Humanos , Insulina/sangue , Masculino , Adulto Jovem
11.
Dev Dyn ; 247(1): 212-221, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28675662

RESUMO

BACKGROUND: Notch signaling is broadly required during embryogenesis, frequently activating the transcription of two basic helix-loop-helix transcription factors, Hes1 and Hes5. But, it remains unresolved when and where Hes1 and Hes5 act alone or together during development. Here, we analyzed a Hes5-green fluorescent protein (GFP) bacterial artificial chromosome (BAC) transgenic mouse, as a proxy for endogenous Hes5. We directly compared transgenic GFP expression with Hes1, and particular markers of embryonic lens and retina development. RESULTS: Hes5-GFP is dynamic within subsets of retinal and lens progenitor cells, and differentiating retinal ganglion neurons, in contrast to Hes1 found in all progenitor cells. In the adult retina, only Müller glia express Hes5-GFP. Finally, Hes5-GFP is up-regulated in Hes1 germline mutants, consistent with previous demonstration that Hes1 suppresses Hes5 transcription. CONCLUSIONS: Hes5-GFP BAC transgenic mice are useful for identifying Hes5-expressing cells. Although Hes5-GFP and Hes1 are coexpressed in particular developmental contexts, we also noted cohorts of lens or retinal cells expressing just one factor. The dynamic Hes5-GFP expression pattern, coupled with its derepressed expression in Hes1 mutants, suggests that this transgene contains the relevant cis-regulatory elements that regulate endogenous Hes5 in the mouse lens and retina. Developmental Dynamics 247:212-221, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cristalino/metabolismo , Organogênese/fisiologia , Proteínas Repressoras/metabolismo , Retina/metabolismo , Fatores de Transcrição HES-1/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica no Desenvolvimento , Cristalino/embriologia , Camundongos , Camundongos Transgênicos , Proteínas Repressoras/genética , Retina/embriologia , Transdução de Sinais/fisiologia , Fatores de Transcrição HES-1/genética
12.
Metabolism ; 69: 24-32, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28285649

RESUMO

AIMS: Pioglitazone (Pio) is known to improve insulin sensitivity in skeletal muscle. However, the role of Pio in skeletal muscle lipid metabolism and skeletal muscle oxidative capacity is not clear. The aim of this study was to determine the effects of chronic Pio treatment on skeletal muscle mitochondrial activity in individuals with type 2 diabetes (T2D). MATERIALS AND METHODS: Twenty-four participants with T2D (13M/11F 53.38±2.1years; BMI 36.47±1.1kg/m2) were randomized to either a placebo (CON, n=8) or a pioglitazone (PIO, n=16) group. Following 12weeks of treatment, we measured insulin sensitivity by hyperinsulinemic-euglycemic clamp (clamp), metabolic flexibility by calculating the change in respiratory quotient (ΔRQ) during the steady state of the clamp, intra- and extra-myocellular lipid content (IMCL and EMCL, respectively) by 1H magnetic resonance spectroscopy (1H-MRS) and muscle maximal ATP synthetic capacity (ATPmax) by 31P-MRS. RESULTS: Following 12weeks of PIO treatment, insulin sensitivity (p<0.0005 vs. baseline) and metabolic flexibility (p<0.05 vs. CON) significantly increased. PIO treatment significantly decreased IMCL content and increased EMCL content in gastrocnemius, soleus and tibialis anterior muscles. ATPmax was unaffected by PIO treatment. CONCLUSIONS: These results suggest that 12weeks of pioglitazone treatment improves insulin sensitivity, metabolic flexibility and myocellular lipid distribution without any effect on maximal ATP synthetic capacity in skeletal muscle. Consequently, pioglitazone-induced enhancements in insulin responsiveness and fuel utilization are independent of mitochondrial function.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Resistência à Insulina , Mitocôndrias Musculares/efeitos dos fármacos , Tiazolidinedionas/uso terapêutico , Trifosfato de Adenosina/biossíntese , Adulto , Composição Corporal , Diabetes Mellitus Tipo 2/metabolismo , Método Duplo-Cego , Feminino , Técnica Clamp de Glucose , Humanos , Hipoglicemiantes/efeitos adversos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Pioglitazona , Tiazolidinedionas/efeitos adversos
13.
Polymers (Basel) ; 10(1)2017 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30966060

RESUMO

This study examines zinc(II)⁻chitosan complexes as a bio-sorbent for phosphate removal from aqueous solutions. The bio-sorbent is prepared and is characterized via Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), and Point of Zero Charge (pHPZC)⁻drift method. The adsorption capacity of zinc(II)⁻chitosan bio-sorbent is compared with those of chitosan and ZnO⁻chitosan and nano-ZnO⁻chitosan composites. The effect of operational parameters including pH, temperature, and competing ions are explored via adsorption batch mode. A rapid phosphate uptake is observed within the first three hours of contact time. Phosphate removal by zinc(II)⁻chitosan is favored when the surface charge of bio-sorbent is positive/or neutral e.g., within the pH range inferior or around its pHPZC, 7. Phosphate abatement is enhanced with decreasing temperature. The study of background ions indicates a minor effect of chloride, whereas nitrate and sulfate show competing effect with phosphate for the adsorptive sites. The adsorption kinetics is best described with the pseudo-second-order model. Sips (R² > 0.96) and Freundlich (R² ≥ 0.95) models suit the adsorption isotherm. The phosphate reaction with zinc(II)⁻chitosan is exothermic, favorable and spontaneous. The complexation of zinc(II) and chitosan along with the corresponding mechanisms of phosphate removal are presented. This study indicates the introduction of zinc(II) ions into chitosan improves its performance towards phosphate uptake from 1.45 to 6.55 mg/g and provides fundamental information for developing bio-based materials for water remediation.

14.
J Clin Endocrinol Metab ; 102(1): 111-121, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27778643

RESUMO

Context: The effects of caloric restriction (CR) on in vivo muscle mitochondrial function in humans are controversial. Objective: We evaluated muscle mitochondrial function and associated transcriptional profiles in nonobese humans after 12 months of CR. Design: Individuals from an ancillary study of the CALERIE 2 randomized controlled trial were assessed at baseline and 12 months after a 25% CR or ad libitum (control) diet. Setting: The study was performed at Pennington Biomedical Research Center in Baton Rouge, LA. Participants: Study participants included 51 (34 female subjects, 25 to 50 years of age) healthy nonobese individuals randomized to 1 of 2 groups (CR or control). Intervention: This study included 12 months of a 25% CR or ad libitum (control) diet. Main Outcomes: In vivo mitochondrial function [maximal ATP synthesis rate (ATPmax), ATPflux/O2 (P/O)] was determined by 31P-magnetic resonance spectroscopy and optical spectroscopy, and body composition was determined by dual-energy X-ray absorptiometry. In a subset of individuals, a muscle biopsy was performed for transcriptional profiling via quantitative reverse transcription polymerase chain reaction and microarrays. Results: Weight, body mass index (BMI), fat, and fat-free mass (P < 0.001 for all) significantly decreased at month 12 after CR vs control. In vivo ATPmax and P/O were unaffected by 12 months of CR. Targeted transcriptional profiling showed no effects on pathways involved in mitochondrial biogenesis, function, or oxidative stress. A subgroup analysis according to baseline P/O demonstrated that a higher (vs lower) P/O was associated with notable improvements in ATPmax and P/O after CR. Conclusions: In healthy nonobese humans, CR has no effect on muscle mitochondrial function; however, having a "more coupled" (versus "less coupled") phenotype enables CR-induced improvements in muscle mitochondrial function.


Assuntos
Biomarcadores/análise , Restrição Calórica , Metabolismo Energético , Perfilação da Expressão Gênica , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Adulto , Composição Corporal , Índice de Massa Corporal , Peso Corporal , Exercício Físico/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Fatores de Tempo
15.
Sci Transl Med ; 8(361): 361ra139, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27798264

RESUMO

Neuromuscular diseases are often caused by inherited mutations that lead to progressive skeletal muscle weakness and degeneration. In diverse populations of normal healthy mice, we observed correlations between the abundance of mRNA transcripts related to mitochondrial biogenesis, the dystrophin-sarcoglycan complex, and nicotinamide adenine dinucleotide (NAD+) synthesis, consistent with a potential role for the essential cofactor NAD+ in protecting muscle from metabolic and structural degeneration. Furthermore, the skeletal muscle transcriptomes of patients with Duchene's muscular dystrophy (DMD) and other muscle diseases were enriched for various poly[adenosine 5'-diphosphate (ADP)-ribose] polymerases (PARPs) and for nicotinamide N-methyltransferase (NNMT), enzymes that are major consumers of NAD+ and are involved in pleiotropic events, including inflammation. In the mdx mouse model of DMD, we observed significant reductions in muscle NAD+ levels, concurrent increases in PARP activity, and reduced expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD+ biosynthesis. Replenishing NAD+ stores with dietary nicotinamide riboside supplementation improved muscle function and heart pathology in mdx and mdx/Utr-/- mice and reversed pathology in Caenorhabditis elegans models of DMD. The effects of NAD+ repletion in mdx mice relied on the improvement in mitochondrial function and structural protein expression (α-dystrobrevin and δ-sarcoglycan) and on the reductions in general poly(ADP)-ribosylation, inflammation, and fibrosis. In combination, these studies suggest that the replenishment of NAD+ may benefit patients with muscular dystrophies or other neuromuscular degenerative conditions characterized by the PARP/NNMT gene expression signatures.


Assuntos
Músculo Esquelético/fisiopatologia , Distrofias Musculares/patologia , NAD/química , Poli ADP Ribosilação , Difosfato de Adenosina/química , Animais , Caenorhabditis elegans , Linhagem Celular , Citocinas/química , Fibrose/patologia , Perfilação da Expressão Gênica , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Musculares/patologia , Nicotinamida Fosforribosiltransferase/química , Nitrosaminas/química , RNA Mensageiro/metabolismo , Tiramina/análogos & derivados , Tiramina/química
16.
J Clin Endocrinol Metab ; 101(12): 4994-5003, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27710240

RESUMO

CONTEXT: Reduced mitochondrial coupling (ATP/O2 [P/O]) is associated with sedentariness and insulin resistance. Interpreting the physiological relevance of P/O measured in vitro is challenging. OBJECTIVE: To evaluate muscle mitochondrial function and associated transcriptional profiles in nonobese healthy individuals distinguished by their in vivo P/O. DESIGN: Individuals from an ancillary study of Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy phase 2 were assessed at baseline. SETTING: The study was performed at Pennington Biomedical Research Center. PARTICIPANTS: Forty-seven (18 males, 26-50 y of age) sedentary, healthy nonobese individuals were divided into 2 groups based on their in vivo P/O. INTERVENTION: None. Main Outcome(s): Body composition by dual-energy x-ray absorptiometry, in vivo mitochondrial function (P/O and maximal ATP synthetic capacity) by 31P-magnetic resonance spectroscopy and optical spectroscopy were measured. A muscle biopsy was performed to measure fiber type, transcriptional profiling (microarray), and protein expressions. RESULTS: No differences in body composition, peak aerobic capacity, type I fiber content, or mitochondrial DNA copy number were observed between the 2 groups. Compared with the uncoupled group (lower P/O), the coupled group (higher P/O) had higher rates of maximal ATP synthetic capacity (maximal ATP synthetic capacity, P < .01). Transcriptomics analyses revealed higher expressions of genes involved in mitochondrial remodeling and the oxidative stress response in the coupled group. A trend for higher mitonuclear protein imbalance (P = .06) and an elevated mitochondrial unfolded protein response (heat shock protein 60 protein; P = .004) were also identified in the coupled group. CONCLUSIONS: Higher muscle mitochondrial coupling is accompanied by an overall elevation in mitochondrial function, a novel transcriptional signature of oxidative stress and mitochondrial remodeling and indications of an mitochondrial unfolded protein response.


Assuntos
Trifosfato de Adenosina/metabolismo , Perfilação da Expressão Gênica , Hormese , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Acoplamento Oxidativo , Estresse Oxidativo , Consumo de Oxigênio , Comportamento Sedentário , Absorciometria de Fóton , Adulto , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade
18.
Front Physiol ; 7: 45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065875

RESUMO

Natural indicators provide intrinsic probes of metabolism, biogenesis and oxidative protection. Nicotinamide adenine dinucleotide metabolites (NAD(P)) are one class of indicators that have roles as co-factors in oxidative phosphorylation, glycolysis, and anti-oxidant protection, as well as signaling in the mitochondrial biogenesis pathway. These many roles are made possible by the distinct redox states (NAD(P)(+) and NAD(P)H), which are compartmentalized between cytosol and mitochondria. Here we provide evidence for detection of NAD(P)(+) and NAD(P)H in separate mitochondrial and cytosol pools in vivo in human tissue by phosphorus magnetic resonance spectroscopy ((31)P MRS). These NAD(P) pools are identified by chemical standards (NAD(+), NADP(+), and NADH) and by physiological tests. A unique resonance reflecting mitochondrial NAD(P)H is revealed by the changes elicited by elevation of mitochondrial oxidation. The decline of NAD(P)H with oxidation is matched by a stoichiometric rise in the NAD(P)(+) peak. This unique resonance also provides a measure of the improvement in mitochondrial oxidation that parallels the greater phosphorylation found after exercise training in these elderly subjects. The implication is that the dynamics of the mitochondrial NAD(P)H peak provides an intrinsic probe of the reversal of mitochondrial dysfunction in elderly muscle. Thus, non-invasive detection of NAD(P)(+) and NAD(P)H in cytosol vs. mitochondria yields natural indicators of redox compartmentalization and sensitive intrinsic probes of the improvement of mitochondrial function with an intervention in human tissues in vivo. These natural indicators hold the promise of providing mechanistic insight into metabolism and mitochondrial function in vivo in a range of tissues in health, disease and with treatment.

19.
Exp Gerontol ; 81: 1-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27084585

RESUMO

BACKGROUND: Age related declines in walking performance may be partly attributable to skeletal muscle mitochondrial dysfunction as mitochondria produce over 90% of ATP needed for movement and the capacity for oxidative phosphorylation decreases with age. METHODS: Participants were from two studies: an ancillary to the Lifestyle Interventions and Independence for Elders (LIFE) Study (n=33), which recruited lower functioning participants (Short Physical Performance Battery [SPPB], 7.8±1.2), and the Study of Energy and Aging-Pilot (SEA, n=29), which enrolled higher functioning (SPPB, 10.8±1.4). Physical activity was measured objectively using the Actigraph accelerometer (LIFE) and SenseWear Pro armband (SEA). Phosphocreatine recovery following muscle contraction of the quadriceps was measured using (31)P magnetic resonance spectroscopy and ATPmax (mM ATP/s) was calculated. Walking performance was defined as time (s) to walk 400m at a usual-pace. The cross-sectional association between mitochondrial function and walking performance was assessed using multivariable linear regression. RESULTS: Participants were 77.6±5.3years, 64.2% female and 67.2% white. ATPmax was similar in LIFE vs. SEA (0.52±0.14 vs. 0.55±0.14, p=0.31), despite different function and activity levels (1.6±2.2 vs.77.4±73.3min of moderate activity/day, p<0.01). Higher ATPmax was related to faster walk-time in SEA (r(2)=0.19, p=0.02,); but not the LIFE (r(2)<0.01, p=0.74) cohort. CONCLUSIONS: Mitochondrial function was associated with walking performance in higher functioning, active older adults, but not lower functioning, sedentary older adults.


Assuntos
Envelhecimento/fisiologia , Mitocôndrias Musculares/fisiologia , Contração Muscular/fisiologia , Músculo Quadríceps/fisiologia , Caminhada/fisiologia , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Humanos , Estilo de Vida , Modelos Lineares , Espectroscopia de Ressonância Magnética , Masculino , Limitação da Mobilidade , Análise Multivariada , Estados Unidos , Teste de Caminhada
20.
J Exp Biol ; 219(Pt 2): 243-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26792336

RESUMO

Mitochondria oxidize substrates to generate the ATP that fuels muscle contraction and locomotion. This review focuses on three steps in oxidative phosphorylation that have independent roles in setting the overall mitochondrial ATP flux and thereby have direct impact on locomotion. The first is the electron transport chain, which sets the pace for oxidation. New studies indicate that the electron transport chain capacity per mitochondria declines with age and disease, but can be revived by both acute and chronic treatments. The resulting higher ATP production is reflected in improved muscle power output and locomotory performance. The second step is the coupling of ATP supply from O2 uptake (mitochondrial coupling efficiency). Treatments that elevate mitochondrial coupling raise both exercise efficiency and the capacity for sustained exercise in both young and old muscle. The final step is ATP synthesis itself, which is under dynamic control at multiple sites to provide the 50-fold range of ATP flux between resting muscle and exercise at the mitochondrial capacity. Thus, malleability at sites in these subsystems of oxidative phosphorylation has an impact on ATP flux, with direct effects on exercise performance. Interventions are emerging that target these three independent subsystems to provide many paths to improve ATP flux and elevate the muscle performance lost to inactivity, age or disease.


Assuntos
Exercício Físico/fisiologia , Mitocôndrias Musculares/metabolismo , Movimento (Física) , Animais , Transporte de Elétrons , Humanos , Fosforilação Oxidativa , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA