Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 176: 113788, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37075880

RESUMO

Tert-Butylhydroquinone (tBHQ), a preservative used to prevent oxidative deterioration of oil, fat, and meat products, has been linked to both chemoprotective and adverse effects. This study investigates the impact of dietary tBHQ consumption on survival, growth parameters, organ development, and gene expression in zebrafish (Danio rerio). As tBHQ activates the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2a), a zebrafish line with a mutation in the DNA-binding domain of Nrf2a was used to identify Nrf2a-dependent vs independent effects. Homozygous Nrf2a wildtype (wt) and mutant (m) larvae were fed a diet containing 5% tBHQ or a control diet. Survival and growth parameters were assessed at 15 days and at 5 months, and samples were collected for RNA sequencing at 5 months. Dietary exposure to tBHQ throughout the larval and juvenile periods negatively impacted growth and survival. RNA-seq analysis found differentially expressed genes related to growth and development and upregulation of several immune system-related pathways. The findings herein demonstrate that dietary tBHQ exposure may impair growth and survival in both Nrf2a dependent and independent manners.


Assuntos
Conservantes de Alimentos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Antioxidantes/metabolismo , Exposição Dietética , Hidroquinonas/toxicidade , Expressão Gênica , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
2.
Free Radic Biol Med ; 194: 284-297, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528121

RESUMO

Dimethyl fumarate (DMF) is pharmaceutical activator of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates of many cellular antioxidant response pathways, and has been used to treat inflammatory diseases such as multiple sclerosis. However, DMF has been shown to produce adverse effects on offspring in animal studies and as such is not recommended for use during pregnancy. The goal of this work is to better understand how these adverse effects are initiated and the role of DMF-induced Nrf2 activation during three critical windows of development in embryonic zebrafish (Danio rerio): pharyngula, hatching, and protruding-mouth stages. To evaluate Nrf2 activation, wildtype zebrafish, and mutant zebrafish (nrf2afh318/fh318) embryos with a loss of function mutation in Nrf2a, the co-ortholog to human Nrf2, were treated for 6 h with DMF (0-20 µM) beginning at the pharyngula, hatching, or protruding-mouth stage and assessed for survival and morphology. Nrf2a mutant fish had an increase in survival, however, morphology studies demonstrated Nrf2a mutant fish had more severe deformities occurring with exposures during the hatching stage. To verify Nrf2 cellular localization and downstream impacts on protein-S-glutathionylation in situ, a concentration below the LOAEL was chosen (7 µM) for immunohistochemistry and S-glutathionylation. Embryos were imaged via epifluorescence microscopy studies, the Nrf2a protein in the body tissue was decreased with DMF only when exposed at the hatching stage, while total protein S-glutathionylation was modulated by Nrf2a activity and DMF during the pharyngula and protruding-mouth stage. The pancreatic islet and liver were further analyzed via confocal microscopy. Pancreatic islets and liver also had tissue specific differences with Nrf2a protein expression and protein S-glutathionylation. This work demonstrates how critical windows of exposure and Nrf2a activity may influence toxicity of DMF and highlights tissue-specific changes in Nrf2a protein levels and S-glutathionylation in pancreatic islet and liver during embryonic development.


Assuntos
Fumarato de Dimetilo , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Fumarato de Dimetilo/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo
3.
Chemosphere ; 287(Pt 2): 132121, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34509758

RESUMO

Since the voluntary phaseout of perfluorooctanesulfonic acid (PFOS), smaller congeners, such as perfluorobutanesulfonic acid (PFBS) have served as industrial replacements and been detected in contaminated aquifers. This study sought to examine the effects of a maternal preconception PFBS exposure on the development of eggs and healthy offspring. Adult female zebrafish received a one-week waterborne exposure of 0.08, 0.14, and 0.25 mg/L PFBS. After which, females were bred with non-exposed males and embryos collected over 5 successful breeding events. PFBS concentrations were detected in levels ranging from 99 to 253 pg/embryo in the first collection but were below the limit of quantitation by fourth and fifth clutches. Therefore, data were subsequently binned into early collection embryos in which PFBS was detected and late collections, in which PFBS was below quantitation. In the early collection, embryo 24 h survival was significantly reduced. In the late collection, embryo development was impacted with unique patterns emerging between Nrf2a wildtype and mutant larvae. Additionally, the impact of nutrient loading into the embryos was assessed through measurement of fatty acid profiles, total cholesterol, and triglyceride content. There were no clear dose-dependent effects, but again unique patterns were observed between the genotypes. Preconception PFBS exposures were found to alter egg and embryo development, which is mediated by direct toxicant loading in the eggs, nutrient loading into eggs, and the function of Nrf2a. These findings provide insight into the reproductive and developmental effects of PFBS and identify maternal preconception as a novel critical window of exposure.


Assuntos
Fluorocarbonos , Peixe-Zebra , Animais , Desenvolvimento Embrionário , Feminino , Fluorocarbonos/toxicidade , Humanos , Masculino , Exposição Materna , Ácidos Sulfônicos/toxicidade , Peixe-Zebra/genética
4.
Redox Biol ; 38: 101788, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33321464

RESUMO

Emerging evidence suggests that redox-active chemicals perturb pancreatic islet development. To better understand potential mechanisms for this, we used zebrafish (Danio rerio) embryos to investigate roles of glutathione (GSH; predominant cellular redox buffer) and the transcription factor Nrf2a (Nfe2l2a; zebrafish Nrf2 co-ortholog) in islet morphogenesis. We delineated critical windows of susceptibility to redox disruption of ß-cell morphogenesis, interrogating embryos at 24, 48 and 72 h post fertilization (hpf) and visualized Nrf2a expression in the pancreas using whole-mount immunohistochemistry at 96 hpf. Chemical GSH modulation at 48 hpf induced significant islet morphology changes at 96 hpf. Pro-oxidant exposures to tert-butylhydroperoxide (77.6 µM; 10-min at 48 hpf) or tert-butylhydroquinone (1 µM; 48-56 hpf) decreased ß-cell cluster area at 96 hpf. Conversely, exposures to antioxidant N-acetylcysteine (bolsters GSH pools; 100 µM; 48-72 hpf) or sulforaphane (activates Nrf2a; 20 µM; 48-72 hpf) significantly increased islet areas. Nrf2a was also stabilized in ß-cells: 10-min exposures to 77.6 µM tert-butylhydroperoxide significantly increased Nrf2a protein compared to control islet cells that largely lack stabilized Nrf2a; 10-min exposures to higher (776 µM) tert-butylhydroperoxide concentration stabilized Nrf2a throughout the pancreas. Using biotinylated-GSH to visualize in situ protein glutathionylation, islet cells displayed high protein glutathionylation, indicating oxidized GSH pools. The 10-min high (776 µM) tert-butylhydroperoxide exposure (induced Nrf2a globally) decreased global protein glutathionylation at 96 hpf. Mutant fish expressing inactive Nrf2a were protected against tert-butylhydroperoxide-induced abnormal islet morphology. Our data indicate that disrupted redox homeostasis and Nrf2a stabilization during pancreatic ß-cell development impact morphogenesis, with implications for disease states at later life stages. Our work identifies a potential molecular target (Nrf2) that mediates abnormal ß-cell morphology in response to redox disruptions. Moreover, our findings imply that developmental exposure to exogenous stressors at distinct windows of susceptibility could diminish the reserve redox capacity of ß-cells, rendering them vulnerable to later-life stresses and disease.


Assuntos
Glutationa , Peixe-Zebra , Animais , Embrião não Mamífero , Organogênese , Compostos de Sulfidrila , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
6.
Heliyon ; 5(10): e02646, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31687501

RESUMO

Arsenic is a metalloid pollutant that is commonly found in surface and groundwater worldwide. Toxicological effects of arsenic are relatively well-known, but much less studied are its effects on behavioral endpoints, which may have considerable evolutionary and population-level consequences. Here we investigated the effects of exposure to environmentally relevant concentrations of arsenic (0, 10 and 100 µg/L) for 96-hours on female preference for male color (i.e. red versus blue) in Betta splendens, an increasingly popular fish model for contaminant-induced behavioral dysfunction. Further, we examined whether arsenic exposure altered anxiety-like behaviors using a standard scototaxis test (preference for light or dark), as well as measured tissue cortisol concentrations to increase our understanding of possible mechanisms driving behavioral responses. We found exposure to 100 µg/L arsenic results in a loss of female preference for red males, and arsenic exposed females showed increased anxiety-like behavior. The loss in preference for male coloration may have been driven by anxiety, as preference for red was negatively correlated with anxiety-like behavior for all fish. Interestingly, increase in anxiety-like behavior occurred without a parallel increase in cortisol. Female preference for red colored males may confer fitness benefits, and this study highlights important arsenic-induced behavioral changes that could have population level consequences.

7.
Redox Biol ; 26: 101235, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31202080

RESUMO

Glutathione (GSH), the most abundant vertebrate endogenous redox buffer, plays key roles in organogenesis and embryonic development, however, organ-specific GSH utilization during development remains understudied. Monochlorobimane (MCB), a dye conjugated with GSH by glutathione-s-transferase (GST) to form a fluorescent adduct, was used to visualize organ-specific GSH utilization in live developing zebrafish (Danio rerio) embryos. Embryos were incubated in 20 µM MCB for 1 h and imaged on an epifluorescence microscope. GSH conjugation with MCB was high during early organogenesis, decreasing as embryos aged. The heart had fluorescence 21-fold above autofluorescence at 24 hpf, dropping to 8.5-fold by 48 hpf; this increased again by 72 hpf to 23.5-fold, and stayed high till 96 hpf (18-fold). The brain had lower fluorescence (10-fold) at 24 and 48 hpf, steadily increasing to 30-fold by 96 hpf. The sensitivity and specificity of MCB staining was then tested with known GSH modulators. A 10-min treatment at 48 hpf with 750 µM tert-butylhydroperoxide, caused organ-specific reductions in staining, with the heart losing 30% fluorescence, and, the brain ventricle losing 47% fluorescence. A 24 h treatment from 24-48 hpf with 100 µM of N-Acetylcysteine (NAC) resulted in significantly increased fluorescence, with the brain ventricle and heart showing 312% and 240% increases respectively, these were abolished upon co-treatment with 5 µM BSO, an inhibitor of the enzyme that utilizes NAC to synthesize GSH. A 60 min 100 µM treatment with ethacrynic acid, a specific GST inhibitor, caused 30% reduction in fluorescence across all measured structures. MCB staining was then applied to test for GSH disruptions caused by the toxicants perfluorooctanesulfonic acid and mono-(2-ethyl-hexyl)phthalate; MCB fluorescence responded in a dose, structure and age-dependent manner. MCB staining is a robust, sensitive method to detect spatiotemporal changes in GSH utilization, and, can be applied to identify sensitive target tissues of toxicants.


Assuntos
Encéfalo/metabolismo , Corantes Fluorescentes/química , Glutationa/metabolismo , Pirazóis/química , Coloração e Rotulagem/métodos , Peixe-Zebra/metabolismo , Acetilcisteína/farmacologia , Ácidos Alcanossulfônicos/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Dietilexilftalato/análogos & derivados , Dietilexilftalato/toxicidade , Embrião não Mamífero , Ácido Etacrínico/farmacologia , Fluorocarbonos/toxicidade , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/metabolismo , Coração/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Organogênese/efeitos dos fármacos , Organogênese/fisiologia , Testes de Toxicidade Crônica , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , terc-Butil Hidroperóxido/farmacologia
8.
Environ Pollut ; 235: 180-185, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29289828

RESUMO

Nitrate accumulation in aquatic reservoirs from agricultural pollution has often been overlooked as a water quality hazard, yet a growing body of literature suggests negative effects on human and wildlife health following nitrate exposure. This research seeks to understand differences in oxygen consumption rates between different routes of laboratory nitrate exposure, whether via immersion or injection, in zebrafish (Danio rerio) embryos. Embryos were exposed within 1 h post fertilization (hpf) to 0, 10, and 100 mg/L NO3-N with sodium nitrate, or to counter ion control (CIC) treatments using sodium chloride. Embryos in the immersion treatments received an injection of 4 nL of appropriate treatment solution into the perivitelline space. At 24 hpf, Oxygen Consumption Rates (OCR) were measured and recorded in vivo using the Agilent Technologies XFe96 Extracellular Flux Analyzer and Spheroid Microplate. Immersion exposures did not induce significant changes in OCR, yet nitrate induced significant changes when injected through the embryo chorion. Injection of 10 and 100 mg/L NO3-N down-regulated OCR compared to the control treatment group. Injection of the 100 mg/L CIC also significantly down-regulated OCR compared to the control treatment group. Interestingly, the 100 mg/L NO3-N treatment further down-regulated OCR compared to the 100 mg/L CIC treatment, suggesting the potential for additive effects between the counter ion and the ion of interest. These data support that elevated nitrate exposure can alter normal metabolic activity by changing OCR in 24 hpf embryos. These results highlight the need for regularly examining the counter ion of laboratory nitrate compounds while conducting research with developing zebrafish, and justify examining different routes of laboratory nitrate exposure, as the chorion may act as an effective barrier to nitrate penetration in zebrafish, which may lead to conservative estimates of significant effects in other species for which nitrate more readily penetrates the chorion.


Assuntos
Embrião não Mamífero/metabolismo , Nitratos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Córion , Embrião não Mamífero/efeitos dos fármacos , Nitratos/metabolismo , Óxidos de Nitrogênio/metabolismo , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA