Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
ChemSusChem ; 17(7): e202301165, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38050766

RESUMO

The bio-based platform molecule levoglucosenone (LGO) is now produced at multi-ton scale by the pyrolysis of cellulosic waste. As such it has become an industrially viable, non-petroleum-derived chemical feedstock. Herein we report the direct (one-step) and operationally simple polymerization of LGO that provides a highly sustainable method for polymer synthesis. Specifically, the ability of LGO to act as an electrophile has been harnessed so as to deliver high molecular weight polymers (Mn=236,000 g/mol, D=2.4) possessing excellent thermal stabilities (TD5 %=249 °C). Furthermore, there is a significant capacity for the effective chemical manipulation of these polymers as exemplified by treatment of them under Baeyer-Villiger conditions and so creating a simple and green route to hydrophilic materials. These one- and two-step transformations provide the most direct route to new, LGO-derived polymer scaffolds yet reported. E-factors of ca. 0.012 and atom economies of up to 99 % have been realized.

2.
Org Lett ; 25(20): 3633-3638, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37184435

RESUMO

Arylthioether functional groups serve as effective electroauxiliaries for tunable oxidations. Herein, we disclose the synthesis of second-generation glutamine building blocks bearing 2,4-dimethoxythiophenyl and 2,4-dichlorothiophenyl-derived electroauxiliaries. These building blocks improve SPPS efficiency and enable fine-tuning of the electrochemical window for selective anodic oxidation reactions in comparison to first-generation 4-methoxythiophenyl- and 4-nitrothiophenyl-substituted variants. Installation onto a segment of involucrin, a protein component of human skin, emphasizes the practical application of the new building blocks for iterative functionalizations.


Assuntos
Iminoácidos , Peptídeos , Humanos , Oxirredução
3.
Macromol Rapid Commun ; 44(7): e2200892, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36661130

RESUMO

The rapid increase in the use of plastics and the related sustainability issues, including the depletion of global petroleum reserves, have rightly sparked interest in the use of biobased polymer feedstocks. Thermosets cannot be remolded, processed, or recycled, and hence cannot be reused because of their permanent molecular architecture. Vitrimers have emerged as a novel polymer family capable of bridging the difference between thermoplastic and thermosets. Vitrimers enable unique recycling strategies, however, it is still important to understand where the raw material feedstocks originate from. Transesterification vitrimers derived from renewable resources are a massive opportunity, however, limited research has been conducted in this specific family of vitrimers. This review article provides a comprehensive overview of transesterification vitrimers produced from biobased monomers. The focus is on the biomass structural suitability with dynamic covalent chemistry, as well as the viability of the synthetic methods.


Assuntos
Plásticos , Polímeros , Reciclagem
4.
Angew Chem Int Ed Engl ; 62(4): e202215470, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36336657

RESUMO

Electrochemical transformations provide enticing opportunities for programmable, residue-specific peptide modifications. Herein, we harness the potential of amidic side-chains as underutilized handles for late-stage modification through the development of an electroauxiliary-assisted oxidation of glutamine residues within unprotected peptides. Glutamine building blocks bearing electroactive side-chain N,S-acetals are incorporated into peptides using standard Fmoc-SPPS. Anodic oxidation of the electroauxiliary in the presence of diverse alcohol nucleophiles enables the installation of high-value N,O-acetal functionalities. Proof-of-principle for an electrochemical peptide stapling protocol, as well as the functionalization of dynorphin B, an endogenous opioid peptide, demonstrates the applicability of the method to intricate peptide systems. Finally, the site-selective and tunable electrochemical modification of a peptide bearing two discretely oxidizable sites is achieved.


Assuntos
Glutamina , Peptídeos , Peptídeos/química , Técnicas de Síntese em Fase Sólida/métodos
5.
Chem Asian J ; 16(6): 604-620, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33463003

RESUMO

The four most prominent forms of biomass are cellulose, hemicellulose, lignin and chitin. In efforts to develop sustainable sources of platform molecules there has been an increasing focus on examining how these biopolymers could be exploited as feedstocks that support the chemical supply chain, including in the production of fine chemicals. Many different approaches are possible and some of the ones being developed in the authors' laboratories are emphasised.

6.
Adv Sci (Weinh) ; 7(17): 2001379, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32999820

RESUMO

3D printing is a rapidly growing technology that has an enormous potential to impact a wide range of industries such as engineering, art, education, medicine, and aerospace. The flexibility in design provided by this technique offers many opportunities for manufacturing sophisticated 3D devices. The most widely utilized method is an extrusion-based solid-freeform fabrication approach, which is an extremely attractive additive manufacturing technology in both academic and industrial research communities. This method is versatile, with the ability to print a range of dimensions, multimaterial, and multifunctional 3D structures. It is also a very affordable technique in prototyping. However, the lack of variety in printable polymers with advanced material properties becomes the main bottleneck in further development of this technology. Herein, a comprehensive review is provided, focusing on material design strategies to achieve or enhance the 3D printability of a range of polymers including thermoplastics, thermosets, hydrogels, and other polymers by extrusion techniques. Moreover, diverse advanced properties exhibited by such printed polymers, such as mechanical strength, conductance, self-healing, as well as other integrated properties are highlighted. Lastly, the stimuli responsiveness of the 3D printed polymeric materials including shape morphing, degradability, and color changing is also discussed.

7.
Sci Adv ; 6(14): eaaz0404, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32270041

RESUMO

The remarkable power of enzymes to undertake catalysis frequently stems from their grouping of multiple, complementary chemical units within close proximity around the enzyme active site. Motivated by this, we report here a bioinspired surfactant catalyst that incorporates a variety of chemical functionalities common to hydrolytic enzymes. The textbook hydrolase active site, the catalytic triad, is modeled by positioning the three groups of the triad (-OH, -imidazole, and -CO2H) on a single, trifunctional surfactant molecule. To support this, we recreate the hydrogen bond donating arrangement of the oxyanion hole by imparting surfactant functionality to a guanidinium headgroup. Self-assembly of these amphiphiles in solution drives the collection of functional headgroups into close proximity around a hydrophobic nano-environment, affording hydrolysis of a model ester at rates that challenge α-chymotrypsin. Structural assessment via NMR and XRD, paired with MD simulation and QM calculation, reveals marked similarities of the co-micelle catalyst to native enzymes.


Assuntos
Hidrolases/química , Tensoativos/química , Sítios de Ligação , Catálise , Domínio Catalítico , Ligação de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
8.
Angew Chem Int Ed Engl ; 59(18): 7049-7056, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32167650

RESUMO

The most pressing challenges for light-driven hydrogel actuators include reliance on UV light, slow response, poor mechanical properties, and limited functionalities. Now, a supramolecular design strategy is used to address these issues. Key is the use of a benzylimine-functionalized anthracene group, which red-shifts the absorption into the visible region and also stabilizes the supramolecular network through π-π interactions. Acid-ether hydrogen bonds are incorporated for energy dissipation under mechanical deformation and maintaining hydrophilicity of the network. This double-crosslinked supramolecular hydrogel developed via a simple synthesis exhibits a unique combination of high strength, rapid self-healing, and fast visible-light-driven shape morphing both in the wet and dry state. As all of the interactions are dynamic, the design enables the structures to be recycled and reprogrammed into different 3D objects.

9.
Adv Mater ; 31(48): e1904956, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31608513

RESUMO

Achieving multifunctional shape-changing hydrogels with synergistic and engineered material properties is highly desirable for their expanding applications, yet remains an ongoing challenge. The synergistic design of multiple dynamic chemistries enables new directions for the development of such materials. Herein, a molecular design strategy is proposed based on a hydrogel combining acid-ether hydrogen bonding and imine bonds. This approach utilizes simple and scalable chemistries to produce a doubly dynamic hydrogel network, which features high water uptake, high strength and toughness, excellent fatigue resistance, fast and efficient self-healing, and superfast, programmable shape changing. Furthermore, deformed shapes can be memorized due to the large thermal hysteresis. This new type of shape-changing hydrogel is expected to be a key component in future biomedical, tissue, and soft robotic device applications.

10.
Macromol Rapid Commun ; 40(10): e1900038, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30977952

RESUMO

Dynamic bonds have achieved significant attention for their ability to impart fascinating properties to polymeric materials, such as high mechanical strength, self-healing, shape memory, 3D printability, and conductivity. Incorporating multiple dynamic bonds into polymer systems affords an attractive and efficient approach to endow multiple functionalities. This mini-review focuses on the use of complementary dynamic interactions to control the properties of soft materials. Owing to the diversity in dynamic chemistries that can be explored, the scope of this article is restricted to polymers and does not include colloids, amphiphiles, liquid crystals, or biological soft matter.


Assuntos
Coloides/química , Cristais Líquidos/química , Polímeros/química , Tensoativos/química , Coloides/síntese química , Condutividade Elétrica , Ligação de Hidrogênio , Polímeros/síntese química , Impressão Tridimensional , Estresse Mecânico , Tensoativos/síntese química
11.
J Mater Chem B ; 6(44): 7122-7128, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-32254628

RESUMO

Hydrogen sulfide has significant therapeutic potential that is continually being implicated in a variety of biochemical processes. This highlight article will present the benefits and opportunities in designing macromolecule based H2S donors. Emphasis will be on how design of polymer systems can help drive the development of H2S therapeutics. With a better range of donor systems this field will progress rapidly and new applications for H2S therapeutics will be discovered.

12.
ACS Appl Mater Interfaces ; 10(1): 955-969, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29206027

RESUMO

Here, we systematically study the effect of fluorination on the performance of all-polymer solar cells by employing a naphthalene diimide (NDI)-based polymer acceptor with thiophene-flanked phenyl co-monomer. Fluorination of the phenyl co-monomer with either two or four fluorine units is used to create a series of acceptor polymers with either no fluorination (PNDITPhT), bifluorination (PNDITF2T), or tetrafluorination (PNDITF4T). In blends with the donor polymer PTB7-Th, fluorination results in an increase in power conversion efficiency from 3.1 to 4.6% despite a decrease in open-circuit voltage from 0.86 V (unfluorinated) to 0.78 V (tetrafluorinated). Countering this decrease in open-circuit voltage is an increase in short-circuit current from 7.7 to 11.7 mA/cm2 as well as an increase in fill factor from 0.45 to 0.53. The origin of the improvement in performance with fluorination is explored using a combination of morphological, photophysical, and charge-transport studies. Interestingly, fluorination is found not to affect the ultrafast charge-generation kinetics, but instead is found to improve charge-collection yield subsequent to charge generation, linked to improved electron mobility and improved phase separation. Fluorination also leads to improved light absorption, with the blue-shifted absorption profile of the fluorinated polymers complementing the absorption profile of the low-band gap PTB7-Th.

13.
Bioconjug Chem ; 28(9): 2235-2240, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28809538

RESUMO

A dual-responsive, cell capture and release surface was prepared through the incorporation of phenylboronic acid (PBA) groups into an oxime-based polyethylene glycol (PEG) hydrogel. Owing to its PEG-like properties, the unfunctionalized hydrogel was nonfouling. The use of highly efficient oxime chemistry allows the incorporation of commercially available 3,5-diformylphenyl boronic acid into the hydrogel matrix. Thus, the surface properties of the hydrogel were modified to enable reversible cell capture and release. Boronic ester formation between PBA groups and cell surface carbohydrates enabled efficient cell capture at pH 6.8. An increase to pH 7.8 resulted in cell detachment. This capture-and-release procedure was performed on MCF-7 human breast cancer cells, NIH-3T3 fibroblast cells, and primary human umbilical vein endothelial cells (HUVECs) and could be cycled with negligible loss in activity. The facile preparation of PBA-functionalized surfaces presented here has applications in biomedical fields such as cell diagnostics and cell culture.


Assuntos
Ácidos Borônicos/química , Adesão Celular , Hidrogéis/química , Polietilenoglicóis/química , Animais , Técnicas de Cultura de Células , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos , Células NIH 3T3 , Oximas/química , Propriedades de Superfície
14.
Macromol Rapid Commun ; 38(19)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28795457

RESUMO

Molecular weight and dispersity (Ð) influence physical and rheological properties of polymers, which are of significant importance in polymer processing technologies. However, these parameters provide only partial information about the precise composition of polymers, which is reflected by the shape and symmetry of molecular weight distribution (MWD). In this work, the effect of MWD symmetry on thermal and rheological properties of polymers with identical molecular weights and Ð is demonstrated. Remarkably, when the MWD is skewed to higher molecular weight, a higher glass transition temperature (Tg ), increased stiffness, increased thermal stability, and higher apparent viscosities are observed. These observed differences are attributed to the chain length composition of the polymers, easily controlled by the synthetic strategy. This work demonstrates a versatile approach to engineer the properties of polymers using controlled synthesis to skew the shape of MWD.


Assuntos
Química Farmacêutica/métodos , Polímeros/química , Reologia , Celulose/química , Peso Molecular , Polímeros/síntese química , Solubilidade , Temperatura de Transição , Viscosidade
15.
Chemistry ; 23(47): 11294-11300, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28489258

RESUMO

Hydrogen sulfide (H2 S) has been identified as an important cell-signaling mediator and has a number of biological functions, such as vascular smooth muscle relaxation, neurotransmission, and regulation of inflammation. A facile and versatile approach for H2 S production initiated by light irradiation and controlled by reaction with an amine or an amino acid was developed. The donor was synthesized in a one-pot reaction, and simple crystallization led to a yield of approximately 90 %. The synthetic strategy is scalable and versatile, and the H2 S donors can be expressed ina number of different molecular and macromolecular forms, including crystalline small-molecule compounds, water-soluble polymers, polystyrene films, and hydrogels. The H2 S donors based on polystyrene film and hydrogel were used as cell-culture scaffolds. The H2 S donor based on water-soluble polymer was applied in photocontrolled inhibition of P-selectin expression on human platelets and subsequent regulation of platelet aggregation. This study provides the simplest controllable H2 S source to study its biological functions. The developed materials are also new therapeutic platforms to deliver H2 S, as there is no accumulation of toxic byproducts, and the donor materials from polystyrene films and hydrogels can be readily removed after releasing H2 S.

16.
Chem Asian J ; 12(13): 1456-1460, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28417588

RESUMO

Well-defined steroid hormone dimers and organogels were produced via a facile and scalable synthesis using oxime click chemistry. The versatile synthetic procedure extends to a wide range of hormones and linker groups exemplified here through the synthesis of cortisol- and progesterone-dimers linked via hydrophobic, hydrophilic or functional groups. This method was also extended to the synthesis of cortisone-based organogels. Owing to the dynamic nature of the oxime bond, the hormone-based materials are degradable via acidic hydrolysis and transoximination representing new materials for the controlled release of steroid hormones.


Assuntos
Hormônios/síntese química , Oximas/química , Dimerização , Géis/síntese química , Géis/química , Hormônios/química , Conformação Molecular
17.
J Colloid Interface Sci ; 494: 139-152, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28157632

RESUMO

Temperature-responsive flocculants, such as poly(N-isopropylacrylamide) (PNIPAM), induce reversible particle aggregation upon heating above a lower critical solution temperature (LCST). The aim of this work is to investigate the aggregation of ground iron ore using PNIPAM and conventional polyacrylamide (PAM) flocculants in a continuously-sheared suspension, through in situ chord length measurements using Focused Beam Reflectance Measurement techniques and real-time imaging of the particle aggregates. In the presence of uncharged PNIPAM, particle aggregation occurs only upon heating to the LCST, and the aggregates continue to grow with further heating. Subsequent cooling re-disperses the aggregates, and repeated heating causes reformation. Unlike uncharged PNIPAM, anionic PNIPAM produces aggregates at temperatures below the LCST due to the polymer chains binding to two different particles via attractive interactions between the acrylic acid groups and the hematite surfaces, and can be added at temperatures above the LCST due to the formation of charge-stabilised micelles. Under continuous shear, the flocculant most able to resist aggregate size reduction was anionic PAM, followed by PAM, anionic PNIPAM, PNIPAM (6MDa), and PNIPAM (122kDa). Reversible aggregate breakage was found with all samples, except with PNIPAM (6MDa) after being subjected to shear rates above 550s-1. Furthermore, heating of the PNIPAM-dosed suspensions at shear rates below 200s-1 produced larger and more breakage-resistant aggregates.

18.
Macromol Rapid Commun ; 38(6)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28117503

RESUMO

The dynamic covalent characteristics of oxime and boronate ester bonds have been explored. A small excess of a competing aldehyde under acidic conditions resulted in oxime polymer degradation from high molecular weights (30 kDa) to low molecular weight oligomers (2.2 kDa). The dynamic nature of oxime bonds imparts oxime cross-linked hydrogels with self-healing properties and the incorporation of phenyl boronic acid groups into the hydrogel network provides a platform for hydrogel functionalization. The addition of a polyphenol (tannic acid) proves a facile means to incorporate a second, dynamic covalent cross-linking network through boronate ester formation which, owing to the increase in the degree of cross-linking, is found to be nearly double the hydrogel strength (storage modulus increased from 4.6 to 8.5 kPa). Finally, the tannic acid cross-linking network is selectively degraded returning the hydrogel storage modulus to its initial value and providing a means for the synthesis of materials with tunable mechanical properties.


Assuntos
Ácidos Borônicos/química , Química Click , Oximas/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
19.
ACS Macro Lett ; 6(7): 668-673, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35650863

RESUMO

The effect of dispersity on block polymer self-assembly was studied in the monodisperse limit using a combination of synthetic chemistry, matrix-assisted laser desorption ionization spectroscopy, and small-angle X-ray scattering. Oligo(methyl methacrylate) (oligoMMA) and oligo(dimethylsiloxane) (oligoDMS) homopolymers were synthesized by conventional polymerization techniques and purified to generate an array of discrete, semidiscrete, and disperse building blocks. Coupling reactions afforded oligo(DMS-MMA) block polymers with precisely tailored molar mass distributions spanning single molecular systems (D = 1.0) to low-dispersity mixtures (D ≈ 1.05). Discrete materials exhibit a pronounced decrease in domain spacing and sharper scattering reflections relative to disperse analogues. The order-disorder transition temperature (TODT) also decreases with increasing dispersity, suggesting stabilization of the disordered phase, presumably due to the strengthening of composition fluctuations at the low molar masses investigated.

20.
Biomacromolecules ; 18(1): 272-280, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27997137

RESUMO

The copolymerization of N-isopropylacrylamide (NiPAm) with aldehyde functional monomers facilitates postpolymerization functionalization with amino acids via reductive amination, negating the need for protecting groups. In reductive amination, the imine formed from the condensation reaction between an amine and an aldehyde is reduced to an amine. In this work, we categorize amino acids into four classes based on the functionality of their side chains (acidic, polar neutral, neutral, and basic) and use their amine groups in condensation reactions with aldehyde functional polymers. The dynamic nature of the imine as well as the versatility of reductive amination to functionalize a polymer with a range of amino acids is highlighted. In this manner, amino acid functional polymers are synthesized without the use of protecting groups with high yields, demonstrating the high functional group tolerance of carbonyl condensation chemistry and the subsequent reduction of the imine. Prior to the reduction of the imine bond, transimination reactions are used to demonstrate dynamic polymers that shuffle from a glycine- to a histidine-functional polymer.


Assuntos
Aminas/química , Aminoácidos/química , Polímeros/síntese química , Aminação , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA