Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Toxicol ; 382024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38846809

RESUMO

The utilization of transcriptomic studies identifying profiles of gene expression, especially in toxicogenomics, has catapulted next-generation sequencing to the forefront of reproductive toxicology. An innovative yet underutilized RNA sequencing technique emerging into this field is single-cell RNA sequencing (scRNA-seq), which provides sequencing at the individual cellular level of gonad tissue. ScRNA-seq provides a novel and unique perspective for identifying distinct cellular profiles, including identification of rare cell subtypes. The specificity of scRNA-seq is a powerful tool for reproductive toxicity research, especially for translational animal models including zebrafish. Studies to date not only have focused on 'tissue atlassing' or characterizing what cell types make up different tissues but have also begun to include toxicant exposure as a factor that this review aims to explore. Future scRNA-seq studies will contribute to understanding exposure-induced outcomes; however, the trade-offs with traditional methods need to be considered.

2.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003401

RESUMO

Urban environments are afflicted by mixtures of anthropogenic volatile organic compounds (VOCs). VOC sources that drive human exposure include vehicle exhaust, industrial emissions, and oil spillage. The highly volatile VOC benzene has been linked to adverse health outcomes. However, few studies have focused on the later-in-life effects of low-level benzene exposure during the susceptible window of early development. Transcriptomic responses during embryogenesis have potential long-term consequences at levels equal to or lower than 1 ppm, therefore justifying the analysis of adult zebrafish that were exposed during early development. Previously, we identified transcriptomic alteration following controlled VOC exposures to 0.1 or 1 ppm benzene during the first five days of embryogenesis using a zebrafish model. In this study, we evaluated the adult-onset transcriptomic responses to this low-level benzene embryogenesis exposure (n = 20/treatment). We identified key genes, including col1a2 and evi5b, that were differentially expressed in adult zebrafish in both concentrations. Some DEGs overlapped at the larval and adult stages, specifically nfkbiaa, mecr, and reep1. The observed transcriptomic results suggest dose- and sex-dependent changes, with the highest impact of benzene exposure to be on cancer outcomes, endocrine system disorders, reproductive success, neurodevelopment, neurological disease, and associated pathways. Due to molecular pathways being highly conserved between zebrafish and mammals, developmentally exposed adult zebrafish transcriptomics is an important endpoint for providing insight into the long term-effects of VOCs on human health and disease.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Animais , Adulto , Humanos , Compostos Orgânicos Voláteis/toxicidade , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/efeitos adversos , Peixe-Zebra/genética , Benzeno/toxicidade , Transcriptoma , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA