RESUMO
Allogeneic transplantation of pancreatic islets for patients with difficult-to-control diabetes mellitus is severely hampered by the requirement for continuous immunosuppression and its associated morbidity. We report that allogeneic transplantation of genetically engineered (B2M-/-, CIITA-/-, CD47+), primary, hypoimmune, pseudo-islets (p-islets) results in their engraftment into a fully immunocompetent, diabetic non-human primate wherein they provide stable endocrine function and enable insulin independence without inducing any detectable immune response in the absence of immunosuppression. Hypoimmune primary p-islets may provide a curative cell therapy for type 1 diabetes mellitus.
Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Humanos , Insulina/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/metabolismo , Primatas , Diabetes Mellitus Tipo 1/terapia , Transplante HomólogoRESUMO
Genetic engineering of allogeneic cell therapeutics that fully prevents rejection by a recipient's immune system would abolish the requirement for immunosuppressive drugs or encapsulation and support large-scale manufacturing of off-the-shelf cell products. Previously, we generated mouse and human hypoimmune pluripotent (HIP) stem cells by depleting HLA class I and II molecules and overexpressing CD47 (B2M-/-CIITA-/-CD47+). To determine whether this strategy is successful in non-human primates, we engineered rhesus macaque HIP cells and transplanted them intramuscularly into four allogeneic rhesus macaques. The HIP cells survived unrestricted for 16 weeks in fully immunocompetent allogeneic recipients and differentiated into several lineages, whereas allogeneic wild-type cells were vigorously rejected. We also differentiated human HIP cells into endocrinologically active pancreatic islet cells and showed that they survived in immunocompetent, allogeneic diabetic humanized mice for 4 weeks and ameliorated diabetes. HIP-edited primary rhesus macaque islets survived for 40 weeks in an allogeneic rhesus macaque recipient without immunosuppression, whereas unedited islets were quickly rejected.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Transplante das Ilhotas Pancreáticas , Camundongos , Animais , Macaca mulatta , Antígeno CD47 , Rejeição de EnxertoRESUMO
Background: Global longitudinal strain (GLS) and mechanical dispersion (MD) by speckle-tracking echocardiography can predict sudden cardiac death (SCD) beyond left ventricular ejection fraction (LVEF) alone. However, prior studies have presumed cardiac cause from EMS records or death certificates rather than gold-standard autopsies. Objectives: We sought to investigate whether abnormal GLS and MD, reflective of underlying myocardial fibrosis, are associated with autopsy-defined sudden arrhythmic death (SAD) in a comprehensive postmortem study. Methods: We identified and autopsied all World Health Organization-defined (presumed) SCDs ages 18-90 via active surveillance of out of hospital deaths in the ongoing San Francisco POstmortem Systematic InvesTigation of Sudden Cardiac Death (POST SCD) Study to refine presumed SCDs to true cardiac causes. We retrieved all available pre-mortem echocardiograms and assessed LVEF, LV-GLS, and MD. The extent of LV myocardial fibrosis was assessed and quantified histologically. Results: Of 652 autopsied subjects, 65 (10%) had echocardiograms available for primary review, obtained at a mean 1.5 years before SCD. Of these, 37 (56%) were SADs and 29 (44%) were non-SADs; fibrosis was quantified in 38 (58%). SADs were predominantly male, but had similar age, race, baseline comorbidities, and LVEF compared to non-SADs (all p>0.05). SADs had significantly reduced LV-GLS (median: -11.4% versus -18.5%, p=0.008) and increased MD (median: 14.8 ms versus 9.4 ms, p=0.006) compared to non-SADs. MD was associated with total LV fibrosis by linear regression in SADs (r=0.58, p=0.002). Conclusion: In this countywide postmortem study of all sudden deaths, autopsy-confirmed arrhythmic deaths had significantly lower LV-GLS and increased MD than non-arrhythmic sudden deaths. Increased MD correlated with higher histologic levels of LV fibrosis in SADs. These findings suggest that increased MD, which is a surrogate for the extent of myocardial fibrosis, may improve risk stratification and specification for SAD beyond LVEF. PERSPECTIVES: Competency in medical knowledge: Mechanical dispersion derived from speckle tracking echocardiography provides better discrimination between autopsy-defined arrhythmic vs non-arrhythmic sudden death than LVEF or LV-GLS. Histological ventricular fibrosis correlates with increased mechanical dispersion in SAD.Translational outlook: Speckle tracking echocardiography parameters, in particular mechanical dispersion, may be considered as a non-invasive surrogate marker for myocardial fibrosis and risk stratification in SCD.
RESUMO
Transplantation of allogeneic pancreatic donor islets has successfully been performed in selected patients with difficult-to-control insulin-dependent diabetes and impaired awareness of hypoglycemia (IAH). However, the required systemic immunosuppression associated with this procedure prevents this cell replacement therapy from more widespread adoption in larger patient populations. We report the editing of primary human islet cells to the hypoimmune HLA class I- and class II-negative and CD47-overexpressing phenotype and their reaggregation into human HIP pseudoislets (p-islets). Human HIP p-islets were shown to survive, engraft, and ameliorate diabetes in immunocompetent, allogeneic, diabetic humanized mice. HIP p-islet cells were further shown to avoid autoimmune killing in autologous, diabetic humanized autoimmune mice. The survival and endocrine function of HIP p-islet cells were not impaired by contamination of unedited or partially edited cells within the p-islets. HIP p-islet cells were eliminated quickly and reliably in this model using a CD47-targeting antibody, thus providing a safety strategy in case HIP cells exert toxicity in a future clinical setting. Transplantation of human HIP p-islets for which no immunosuppression is required has the potential to lead to wider adoption of this therapy and help more diabetes patients with IAH and history of severe hypoglycemic events to achieve insulin independence.
Assuntos
Diabetes Mellitus Tipo 1 , Transplante de Células-Tronco Hematopoéticas , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Animais , Camundongos , Antígeno CD47 , Transplante das Ilhotas Pancreáticas/métodos , Autoimunidade , Diabetes Mellitus Tipo 1/terapia , InsulinaRESUMO
OBJECTIVE: Current guidelines for prophylactic replacement of the thoracic aorta, primarily based on size alone, may not be adequate in identifying patients at risk for either progression of disease or aortic catastrophe. We undertook the current study to determine whether the mechanical properties of the aorta might be able to predict aneurysmal dilatation of the aorta using a clinical database and benchtop mechanical testing of human aortic tissue. METHODS: Using over 400 samples from 31 patients, mechanical properties were studied in (a) normal aorta and then (b) between normal and diseased aorta using linear mixed-effects models. A machine learning technique was used to predict aortic growth rate over time using mechanical properties and baseline clinical characteristics. RESULTS: Healthy aortic tissue under in vivo loading conditions, after accounting for aortic segment location, had lower longitudinal elastic modulus compared with circumferential elastic modulus: -166.8 kPa (95% confidence interval [CI]: -210.8 to -122.7, P < .001). Fracture toughness was also lower in the longitudinal vs circumferential direction: -201.2 J/m3 (95% CI: -272.9 to -129.5, P < .001). Finally, relative strain was lower in the longitudinal direction compared with the circumferential direction: -0.01 (95% CI: -0.02 to -0.004, P = .002). Patients with diseased aorta, after accounting for segment location and sample direction, had decreased toughness compared with normal aorta, -431.7 J/m3 (95% CI: -628.6 to -234.8, P < .001), and increased relative strain, 0.09 (95% CI: 0.04 to 0.14, P = .003). CONCLUSIONS: Increasing relative strain was identified as a novel independent predictor of aneurysmal degeneration. Noninvasive measurement of relative strain may aid in the identification and monitoring of patients at risk for aneurysmal degeneration. (JVS-Vascular Science 2021;2:1-12.). CLINICAL RELEVANCE: Aortic aneurysm surveillance and prophylactic surgical recommendations are based on computed tomographic angiogram aortic dimensions and growth rate measurements. However, aortic catastrophes may occur at small sizes, confounding current risk stratification models. Herein, we report that increasing aortic relative strain, that is, greater distensibility, is associated with growth over time, thus potentially identifying patients at risk for dissection/rupture.
RESUMO
Although TP53 is the most commonly mutated gene in human cancers, the p53-dependent transcriptional programs mediating tumor suppression remain incompletely understood. Here, to uncover critical components downstream of p53 in tumor suppression, we perform unbiased RNAi and CRISPR-Cas9-based genetic screens in vivo. These screens converge upon the p53-inducible gene Zmat3, encoding an RNA-binding protein, and we demonstrate that ZMAT3 is an important tumor suppressor downstream of p53 in mouse KrasG12D-driven lung and liver cancers and human carcinomas. Integrative analysis of the ZMAT3 RNA-binding landscape and transcriptomic profiling reveals that ZMAT3 directly modulates exon inclusion in transcripts encoding proteins of diverse functions, including the p53 inhibitors MDM4 and MDM2, splicing regulators, and components of varied cellular processes. Interestingly, these exons are enriched in NMD signals, and, accordingly, ZMAT3 broadly affects target transcript stability. Collectively, these studies reveal ZMAT3 as a novel RNA-splicing and homeostasis regulator and a key component of p53-mediated tumor suppression.
Assuntos
Proteínas de Ligação a RNA/genética , Proteína Supressora de Tumor p53/genética , Adenocarcinoma/genética , Processamento Alternativo , Animais , Proteínas de Ciclo Celular/metabolismo , Éxons , Perfilação da Expressão Gênica/métodos , Genes Supressores de Tumor , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Interferência de RNA , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/metabolismoRESUMO
BACKGROUND: Gene regulatory networks control tissue homeostasis and disease progression in a cell type-specific manner. Ubiquitously expressed chromatin regulators modulate these networks, yet the mechanisms governing how tissue specificity of their function is achieved are poorly understood. BRD4 (bromodomain-containing protein 4), a member of the BET (bromo- and extraterminal domain) family of ubiquitously expressed acetyl-lysine reader proteins, plays a pivotal role as a coactivator of enhancer signaling across diverse tissue types in both health and disease and has been implicated as a pharmacological target in heart failure. However, the cell-specific role of BRD4 in adult cardiomyocytes remains unknown. METHODS: We combined conditional mouse genetics, unbiased transcriptomic and epigenomic analyses, and classic molecular biology and biochemical approaches to understand the mechanism by which BRD4 in adult cardiomyocyte homeostasis. RESULTS: Here, we show that cardiomyocyte-specific deletion of Brd4 in adult mice leads to acute deterioration of cardiac contractile function with mutant animals demonstrating a transcriptomic signature characterized by decreased expression of genes critical for mitochondrial energy production. Genome-wide occupancy data show that BRD4 enriches at many downregulated genes (including the master coactivators Ppargc1a, Ppargc1b, and their downstream targets) and preferentially colocalizes with GATA4 (GATA binding protein 4), a lineage-determining cardiac transcription factor not previously implicated in regulation of adult cardiac metabolism. BRD4 and GATA4 form an endogenous complex in cardiomyocytes and interact in a bromodomain-independent manner, revealing a new functional interaction partner for BRD4 that can direct its locus and tissue specificity. CONCLUSIONS: These results highlight a novel role for a BRD4-GATA4 module in cooperative regulation of a cardiomyocyte-specific gene program governing bioenergetic homeostasis in the adult heart.
Assuntos
Metabolismo Energético , Fator de Transcrição GATA4/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Animais , Metabolismo Energético/genética , Fator de Transcrição GATA4/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genótipo , Células HEK293 , Homeostase , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Proteínas Nucleares/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fenótipo , Ligação Proteica , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Transcriptoma , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular EsquerdaRESUMO
Pathogenic DNM1L mutations cause a mitochondrial disorder with a highly variable clinical phenotype characterized by developmental delay, hypotonia, seizures, microcephaly, poor feeding, ocular abnormalities, and dysarthria. We report the case of an 8-month-old female with autosomal dominant, de novo DNM1L c. 1228G>A (p. E410K) mutation and mitochondrial disorder, septo-optic dysplasia, hypotonia, developmental delay, elevated blood lactate, and severe mitochondrial cardiomyopathy leading to nonischemic congestive heart failure and cardiogenic shock resulting in death. This case suggests that cardiac involvement, previously undescribed, can be a clinically important feature of this syndrome and should be screened for at diagnosis.
Assuntos
Dinaminas/genética , Cardiopatias/diagnóstico , Cardiopatias/genética , Encefalomiopatias Mitocondriais/diagnóstico , Encefalomiopatias Mitocondriais/genética , Mutação , Fenótipo , Adulto , Alelos , Biópsia , Criança , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Imuno-Histoquímica , MasculinoRESUMO
Marfan syndrome (MFS) is a connective tissue disorder that results in aortic root aneurysm formation. Reactive oxygen species (ROS) seem to play a role in aortic wall remodelling in MFS, although the mechanism remains unknown. MFS Fbn1C1039G/+ mouse root/ascending (AS) and descending (DES) aortic samples were examined using DHE staining, lucigenin-enhanced chemiluminescence (LGCL), Verhoeff's elastin-Van Gieson staining (elastin breakdown) and in situ zymography for protease activity. Fbn1C1039G/+ AS- or DES-derived smooth muscle cells (SMC) were treated with anti-TGF-ß antibody, angiotensin II (AngII), anti-TGF-ß antibody + AngII, or isotype control. ROS were detected during early aneurysm formation in the Fbn1C1039G/+ AS aorta, but absent in normal-sized DES aorta. Fbn1C1039G/+ mice treated with the unspecific NADPH oxidase inhibitor, apocynin reduced AS aneurysm formation, with attenuated elastin fragmentation. In situ zymography revealed apocynin treatment decreased protease activity. In vitro SMC studies showed Fbn1C1039G/+ -derived AS SMC had increased NADPH activity compared to DES-derived SMC. AS SMC NADPH activity increased with AngII treatment and appeared TGF-ß dependent. In conclusion, ROS play a role in MFS aneurysm development and correspond anatomically with aneurysmal aortic segments. ROS inhibition via apocynin treatment attenuates MFS aneurysm progression. AngII enhances ROS production in MFS AS SMCs and is likely TGF-ß dependent.
Assuntos
Aneurisma/complicações , Aneurisma/metabolismo , Síndrome de Marfan/complicações , Síndrome de Marfan/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetofenonas/farmacologia , Angiotensina II , Animais , Aorta/metabolismo , Aorta/patologia , Modelos Animais de Doenças , Fibrilina-1/deficiência , Fibrilina-1/metabolismo , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , NADPH Oxidases/metabolismoRESUMO
Background Statins reduce aneurysm growth in mouse models of Marfan syndrome, although the mechanism is unknown. In addition to reducing cholesterol, statins block farnesylation and geranylgeranylation, which participate in membrane-bound G-protein signaling, including Ras. We dissected the prenylation pathway to define the effect of statins on aneurysm reduction. Methods and Results Fbn1C1039G/+ mice were treated with (1) pravastatin (HMG-CoA [3-hydroxy-3-methylglutaryl coenzyme A] reductase inhibitor), (2) manumycin A ( MA ; FPT inhibitor), (3) perillyl alcohol ( GGPT 1 and -2 inhibitor), or (4) vehicle control from age 4 to 8 weeks and euthanized at 12 weeks. Histological characterization was performed. Protein analysis was completed on aortic specimens to measure ERK (extracellular signal-regulated kinase) signaling. In vitro Fbn1C1039G/+ aortic smooth muscle cells were utilized to measure Ras-dependent ERK signaling and MMP (matrix metalloproteinase) activity. Pravastatin and MA significantly reduced aneurysm growth compared with vehicle control (n=8 per group). In contrast, PA did not significantly decrease aneurysm size. Histology illustrated reduced elastin breakdown in MA -treated mice compared with vehicle control (n=5 per group). Although elevated in control Marfan mice, both phosphorylated c-Raf and phosphorylated ERK 1/2 were significantly reduced in MA -treated mice (4-5 per group). In vitro smooth muscle cell studies confirmed phosphorylated cR af and phosphorylated ERK 1/2 signaling was elevated in Fbn1C1039G/+ smooth muscle cells (n=5 per group). Fbn1C1039G/+ smooth muscle cell Ras-dependent ERK signaling and MMP activity were reduced following MA treatment (n=5 per group). Corroborating in vitro findings, MMP activity was also decreased in pravastatin-treated mice. Conclusions Aneurysm reduction in Fbn1C1039G/+ mice following pravastatin and MA treatment was associated with a decrease in Ras-dependent ERK signaling. MMP activity can be reduced by diminishing Ras signaling.
Assuntos
Aneurisma da Aorta Torácica/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Pravastatina/farmacologia , Pravastatina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Aneurisma da Aorta Torácica/etiologia , Feminino , Masculino , Síndrome de Marfan/complicações , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) describes a group of developmental disorders affecting the lungs with its pulmonary vasculature. Mutations in the FOXF1 gene have been reported in most cases, and extrapulmonary findings were described. We present two patients with ACDMPV and FOXF1 mutations that illustrate the variability in presentation and outcome of their disease. Patient 1 was a full-term infant with imperforate anus and pulmonary hypertension. He required Extracorporeal Membrane Oxygenation on day of life (DOL) 3, and passed away on DOL 13 after no clinical improvement. Postmortem findings were consistent with ACDMPV. FOXF1 testing revealed a heterozygous pathogenic frameshift de novo mutation, c.1057_1078dup, p.(Gly360Valfs*58). Patient 2 is a 6-month-old female, with a small omphalocele. She had intermittent retractions at 1 week of age. She was admitted with pulmonary hypertension at 7 weeks of age. Lung biopsy confirmed ACDMPV. FOXF1 testing revealed a de novo, heterozygous likely pathogenic missense mutation c.253T>C, p.(Phe85Leu]). Our two patients had different presentations, ages of onset, and progression of their disease. Our second patient had patchy lung involvement on biopsy, which may explain the relatively delayed onset and longer survival. ACDMPV is an important consideration for full-term infants with worsening pulmonary hypertension early in life.
Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Fatores de Transcrição Forkhead/genética , Mutação , Síndrome da Persistência do Padrão de Circulação Fetal/diagnóstico , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Alvéolos Pulmonares/anormalidades , Veias Pulmonares/anormalidades , Autopsia , Biomarcadores , Biópsia , Hibridização Genômica Comparativa , Análise Citogenética , Ecocardiografia , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Large-scale genomic analyses of human cancers have cataloged somatic point mutations thought to initiate tumor development and sustain cancer growth. However, determining the functional significance of specific alterations remains a major bottleneck in our understanding of the genetic determinants of cancer. Here, we present a platform that integrates multiplexed AAV/Cas9-mediated homology-directed repair (HDR) with DNA barcoding and high-throughput sequencing to simultaneously investigate multiple genomic alterations in de novo cancers in mice. Using this approach, we introduce a barcoded library of non-synonymous mutations into hotspot codons 12 and 13 of Kras in adult somatic cells to initiate tumors in the lung, pancreas, and muscle. High-throughput sequencing of barcoded Kras HDR alleles from bulk lung and pancreas reveals surprising diversity in Kras variant oncogenicity. Rapid, cost-effective, and quantitative approaches to simultaneously investigate the function of precise genomic alterations in vivo will help uncover novel biological and clinically actionable insights into carcinogenesis.
Assuntos
Carcinogênese/genética , Análise Mutacional de DNA/métodos , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Reparo de DNA por Recombinação/genética , Animais , Sistemas CRISPR-Cas/genética , Análise Custo-Benefício , Análise Mutacional de DNA/economia , Estudos de Viabilidade , Feminino , Genômica/economia , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Masculino , Camundongos , Mutação , Neoplasias/patologia , Reprodutibilidade dos TestesRESUMO
Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models-the helium-ignition branch-does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.
RESUMO
BACKGROUND: Our aim was to develop a model of acute right heart failure (ARHF) in the setting of pulmonary hypertension and to characterize acute right ventricular lesions that develop early after hemodynamic restoration. METHODS AND RESULTS: We used a described piglet model of chronic pulmonary hypertension (cPH) induced by pulmonary artery occlusions. We induced ARHF in animals with cPH (ARHF-cPH group, n = 9) by volume loading and iterative acute pulmonary embolism until hemodynamic compromise followed by dobutamine infusion for hemodynamic restoration before sacrifice for right ventricular tissue evaluation. The median duration of ARHF before sacrifice was 162 (135-189) minutes. Although ventriculoarterial coupling (measured with multibeat pressure-volume loops) and stroke volume decreased after iterative pulmonary embolism and improved with dobutamine, relative pulmonary to systemic pressure increased by 2-fold and remained similarly increased with dobutamine. Circulating high-sensitivity troponin I increased after hemodynamic restoration. We found an increase in right ventricular subendocardial and subepicardial focal ischemic lesions and in expression of autophagy-related protein LC3-II (Western blot) in the ARHF-cPH group compared with the cPH (n = 5) and control (n = 5) groups. CONCLUSIONS: We developed and phenotyped a novel large animal model of ARHF on cPH in which right ventricular ischemic lesions were observed early after hemodynamic restoration.
Assuntos
Modelos Animais de Doenças , Insuficiência Cardíaca/diagnóstico por imagem , Hipertensão Pulmonar/diagnóstico por imagem , Embolia Pulmonar/diagnóstico por imagem , Disfunção Ventricular Direita/diagnóstico por imagem , Animais , Animais Recém-Nascidos , Biomarcadores/sangue , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/fisiopatologia , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/fisiopatologia , Embolia Pulmonar/sangue , Embolia Pulmonar/fisiopatologia , Suínos , Disfunção Ventricular Direita/sangue , Disfunção Ventricular Direita/fisiopatologiaRESUMO
There is growing interest in using embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an "allogenized" mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts.
Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Imunidade Inata/imunologia , Células-Tronco Pluripotentes/metabolismo , Condicionamento Pré-Transplante/métodos , Animais , Modelos Animais de Doenças , Rejeição de Enxerto , Humanos , CamundongosRESUMO
Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced PSCs (hiPSCs), have great potential as an unlimited donor source for cell-based therapeutics. The risk of teratoma formation from residual undifferentiated cells, however, remains a critical barrier to the clinical application of these cells. Herein, we describe external beam radiation therapy (EBRT) as an attractive option for the treatment of this iatrogenic growth. We present evidence that EBRT is effective in arresting growth of hESC-derived teratomas in vivo at day 28 post-implantation by using a microCT irradiator capable of targeted treatment in small animals. Within several days of irradiation, teratomas derived from injection of undifferentiated hESCs and hiPSCs demonstrated complete growth arrest lasting several months. In addition, EBRT reduced reseeding potential of teratoma cells during serial transplantation experiments, requiring irradiated teratomas to be seeded at 1 × 103 higher doses to form new teratomas. We demonstrate that irradiation induces teratoma cell apoptosis, senescence, and growth arrest, similar to established radiobiology mechanisms. Taken together, these results provide proof of concept for the use of EBRT in the treatment of existing teratomas and highlight a strategy to increase the safety of stem cell-based therapies. Stem Cells 2017;35:1994-2000.
Assuntos
Células-Tronco Pluripotentes/patologia , Radiação Ionizante , Teratoma/radioterapia , Apoptose/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Humanos , Células-Tronco Pluripotentes/efeitos da radiação , Teratoma/patologiaRESUMO
Programmed cell death protein 1 (PD-1) is an immune checkpoint receptor that is upregulated on activated T cells for the induction of immune tolerance. Tumour cells frequently overexpress the ligand for PD-1, programmed cell death ligand 1 (PD-L1), facilitating their escape from the immune system. Monoclonal antibodies that block the interaction between PD-1 and PD-L1, by binding to either the ligand or receptor, have shown notable clinical efficacy in patients with a variety of cancers, including melanoma, colorectal cancer, non-small-cell lung cancer and Hodgkin's lymphoma. Although it is well established that PD-1-PD-L1 blockade activates T cells, little is known about the role that this pathway may have in tumour-associated macrophages (TAMs). Here we show that both mouse and human TAMs express PD-1. TAM PD-1 expression increases over time in mouse models of cancer and with increasing disease stage in primary human cancers. TAM PD-1 expression correlates negatively with phagocytic potency against tumour cells, and blockade of PD-1-PD-L1 in vivo increases macrophage phagocytosis, reduces tumour growth and lengthens the survival of mice in mouse models of cancer in a macrophage-dependent fashion. This suggests that PD-1-PD-L1 therapies may also function through a direct effect on macrophages, with substantial implications for the treatment of cancer with these agents.
Assuntos
Neoplasias do Colo/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Fagocitose , Receptor de Morte Celular Programada 1/metabolismo , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estadiamento de Neoplasias , Fagocitose/efeitos dos fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Aortic root aneurysm formation and subsequent dissection and/or rupture remain the leading cause of death in patients with Marfan syndrome. Our laboratory has reported that miR-29b participates in aortic root/ascending aorta extracellular matrix remodeling during early aneurysm formation in Fbn1C1039G/+ Marfan mice. Herein, we sought to determine whether miR-29b suppression can reduce aneurysm formation long-term. Fbn1C1039G/+ Marfan mice were treated with retro-orbital LNA-anti-miR-29b inhibitor or scrambled-control-miR before aneurysms develop either (1) a single dose prenatally (pregnant Fbn1C1039G/+ mice at 14.5 days post-coitum) (n = 8-10, each group) or (2) postnatally every other week, from 2 to 22 weeks of age, and sacrificed at 24 weeks (n = 8-10, each group). To determine if miR-29b blockade was beneficial even after aneurysms develop, a third group of animals were treated every other week, starting at 8 weeks of age, until sacrificed (n = 4-6, each group). miR-29b inhibition resulted in aneurysm reduction, increased elastogenesis, decreased matrix metalloproteinase activity and decreased elastin breakdown. Prenatal LNA-anti-miR-29b inhibitor treatment decreased aneurysm formation up to age 32 weeks, whereas postnatal treatment was effective up to 16 weeks. miR-29b blockade did not slow aortic growth once aneurysms already developed. Systemic miR-29b inhibition significantly reduces aneurysm development long-term in a Marfan mouse model. Drug administration during aortic wall embryologic development appears fundamental. miR-29b suppression could be a potential therapeutic target for reducing aneurysm formation in Marfan syndrome patients.
Assuntos
Aneurisma Aórtico/prevenção & controle , Terapia Genética/métodos , Síndrome de Marfan/terapia , MicroRNAs/antagonistas & inibidores , Animais , Aneurisma Aórtico/diagnóstico por imagem , Aneurisma Aórtico/etiologia , Aneurisma Aórtico/patologia , Modelos Animais de Doenças , Progressão da Doença , Ecocardiografia , Elastina/metabolismo , Matriz Extracelular/fisiologia , Feminino , Terapias Fetais/métodos , Masculino , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Metaloproteinases da Matriz/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Terapia de Alvo Molecular/métodos , Cuidado Pré-Natal/métodosRESUMO
Metastases are the main cause of cancer deaths, but the mechanisms underlying metastatic progression remain poorly understood. We isolated pure populations of cancer cells from primary tumors and metastases from a genetically engineered mouse model of human small cell lung cancer (SCLC) to investigate the mechanisms that drive the metastatic spread of this lethal cancer. Genome-wide characterization of chromatin accessibility revealed the opening of large numbers of distal regulatory elements across the genome during metastatic progression. These changes correlate with copy number amplification of the Nfib locus, and differentially accessible sites were highly enriched for Nfib transcription factor binding sites. Nfib is necessary and sufficient to increase chromatin accessibility at a large subset of the intergenic regions. Nfib promotes pro-metastatic neuronal gene expression programs and drives the metastatic ability of SCLC cells. The identification of widespread chromatin changes during SCLC progression reveals an unexpected global reprogramming during metastatic progression.