Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Methods ; 15(13): 1690-1699, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36928304

RESUMO

High magnetic field NMR spectroscopy featuring the use of superconducting magnets is a powerful analytical technique for the detection of honey adulteration. Such high field NMR systems are, however, typically housed in specialised laboratories, require cryogenic coolants, and necessitate specialist training to operate. Benchtop NMR spectrometers featuring permanent magnets are, by comparison, significantly cheaper, more mobile and can be operated with minimal expertise. The lower magnetic fields used in such systems, however, result in limited spectral resolution, which diminishes their ability to perform quantitative composition analysis. These limitations may be overcome by implementing a recently developed field-invariant model-based fitting method which is defined by the underlying quantum mechanical properties of the nuclear spin system; this method is applied here to quantify the sugar composition of honey using benchtop 1H NMR (43 MHz) spectroscopy. The detection of adulteration of 26 honey samples with brown rice syrup is quantitatively demonstrated to a minimum adulterant concentration of 5 wt%. Honey adulteration with corn syrup, glucose syrup and wheat syrup was also quantitatively detected using this approach. Our NMR detection of adulteration was shown to be invariant with time over 60 days of storage.


Assuntos
Mel , Mel/análise , Contaminação de Alimentos/análise , Carboidratos , Glucose/análise , Espectroscopia de Ressonância Magnética
2.
Phys Chem Chem Phys ; 22(24): 13689-13697, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32525174

RESUMO

Understanding the uptake and storage of gases by microporous materials is important for our future energy security. As such, we demonstrate here the application of two-dimensional NMR relaxation experiments for probing the admission and corresponding exchange dynamics of methane within microporous zeolites. Specifically, we report low-field (12.7 MHz) 1H NMR relaxation-exchange correlation measurements of methane within commercial LTA zeolites (3A and 4A) at 25 and 35 bar and ambient temperature. Our results demonstrate the clear identification of bulk-pore and pore-pore exchange processes within zeolite 4A, facilitating the calculation and comparison of effective exchange rate dynamics across varying diffusion length scales and gas pressures. Additional data acquired for zeolite 3A reveals the sensitivity of NMR relaxation phenomena to size-exclusive gas admission phenomena, illustrating the potential of benchtop NMR protocols for material screening applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA