Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
1.
Sci Total Environ ; : 173579, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823713

RESUMO

Human land use changes are threatening the integrity and health of coastal ecosystems worldwide. Intensified land use for anthropogenic purposes increases sedimentation rates, pollutants, and nutrient concentrations into adjacent coastal areas, often with detrimental effects on marine life and ecosystem functioning. However, how these factors interact to influence ecosystem health in mangrove forests is poorly understood. This study investigates the effects of catchment human land use on mangrove forest architecture and sedimentary attributes at a landscape-scale. Thirty sites were selected along a gradient of human land use within a narrow latitudinal range, to minimise the effects of varying climatic conditions. Land use was quantified using spatial analysis tools with existing land use databases (LCDB5). Twenty-six forest architectural and sedimentary variables were collected from each site. The results revealed a significant effect of human land use on ten out of 26 environmental variables. Eutrophication, characterised by changes in redox potential, pH, and sediment nutrient concentrations, was strongly associated with increasing human land use. The δ15N values of sediments and leaves also indicated increased anthropogenic nitrogen input. Furthermore, the study identified a positive correlation between human land use and tree density, indicating that increased nutrient delivery from catchments contributes to enhanced mangrove growth. Propagule and seedling densities were also positively correlated with human land use, suggesting potential recruitment success mechanisms. This research underpins the complex interactions between human land use and mangrove ecosystems, revealing changes in carbon dynamics, potential alterations in ecosystem services, and a need for holistic management approaches that consider the interconnectedness of species and their environment. These findings provide essential insights for regional ecosystem models, coastal management, and restoration strategies to address the impacts of human pressures on temperate mangrove forests, even in estuaries that may be relatively healthy.

2.
Inorg Chem ; 63(21): 9355-9362, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38798242
3.
J Am Chem Soc ; 146(15): 10367-10380, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569081

RESUMO

Comparison of bonding and electronic structural features between trivalent lanthanide (Ln) and actinide (An) complexes across homologous series' of molecules can provide insights into subtle and overt periodic trends. Of keen interest and debate is the extent to which the valence f- and d-orbitals of trivalent Ln/An ions engage in covalent interactions with different ligand donor functionalities and, crucially, how bonding differences change as both the Ln and An series are traversed. Synthesis and characterization (SC-XRD, NMR, UV-vis-NIR, and computational modeling) of the homologous lanthanide and actinide N-heterocyclic carbene (NHC) complexes [M(C5Me5)2(X)(IMe4)] {X = I, M = La, Ce, Pr, Nd, U, Np, Pu; X = Cl, M = Nd; X = I/Cl, M = Nd, Am; and IMe4 = [C(NMeCMe)2]} reveals consistently shorter An-C vs Ln-C distances that do not substantially converge upon reaching Am3+/Nd3+ comparison. Specifically, the difference of 0.064(6) Å observed in the La/U pair is comparable to the 0.062(4) Å difference observed in the Nd/Am pair. Computational analyses suggest that the cause of this unusual observation is rooted in the presence of π-bonding with the valence d-orbital manifold in actinide complexes that is not present in the lanthanide congeners. This is in contrast to other documented cases of shorter An-ligand vs Ln-ligand distances, which are often attributed to increased 5f vs 4f radial diffusivity leading to differences in 4f and 5f orbital bonding involvement. Moreover, in these traditional observations, as the 5f series is traversed, the 5f manifold contracts such that by americium structural studies often find no statistically significant Am3+vs Nd3+ metal-ligand bond length differences.

4.
ACS Appl Mater Interfaces ; 16(12): 14841-14851, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488153

RESUMO

Advancement toward dye-sensitized photoelectrochemical cells to produce solar fuels by solar-driven water splitting requires a photosensitizer that is firmly attached to the semiconducting photoelectrodes. Covalent binding enhances the efficiency of electron injection from the photoexcited dye into the metal oxide. Optimization of charge transfer, efficient electron injection, and minimal electron-hole recombination are mandatory for achieving high efficiencies. Here, a BODIPY-based dye exploiting a novel surface-anchoring mode via boron is compared to a similar dye bound by a traditional carboxylic acid anchoring group. Through terahertz and transient absorption spectroscopic studies, along with interfacial electron transfer simulations, we find that, when compared to the traditional carboxylic acid anchoring group, electron injection of boron-bound BODIPY is faster into both TiO2 and SnO2. Although the surface coverage is low compared with carboxylic acids, the binding stability is improved over a wide range of pH. Subsequent photoelectrochemical studies using a sacrificial electron donor showed that this combined dye and anchoring group maintained photocurrent with good stability over long-time irradiation. This recently discovered binding mode of BODIPY shows excellent electron injection and good stability over time, making it promising for future investigations.

5.
Nat Commun ; 15(1): 2573, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519487

RESUMO

In two-dimensional chiral metal-halide perovskites, chiral organic spacers endow structural and optical chirality to the metal-halide sublattice, enabling exquisite control of light, charge, and electron spin. The chiroptical properties of metal-halide perovskites have been measured by transmissive circular dichroism spectroscopy, which necessitates thin-film samples. Here, by developing a reflection-based approach, we characterize the intrinsic, circular polarization-dependent complex refractive index for a prototypical two-dimensional chiral lead-bromide perovskite and report large circular dichroism for single crystals. Comparison with ab initio theory reveals the large circular dichroism arises from the inorganic sublattice rather than the chiral ligand and is an excitonic phenomenon driven by electron-hole exchange interactions, which breaks the degeneracy of transitions between Rashba-Dresselhaus-split bands, resulting in a Cotton effect. Our study suggests that previous data for spin-coated films largely underestimate the optical chirality and provides quantitative insights into the intrinsic optical properties of chiral perovskites for chiroptical and spintronic applications.

6.
Yeast ; 41(3): 73-86, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451028

RESUMO

Schizosaccharomyces japonicus belongs to the single-genus class Schizosaccharomycetes, otherwise known as "fission yeasts." As part of a composite model system with its widely studied S. pombe sister species, S. japonicus has provided critical insights into the workings and the evolution of cell biological mechanisms. Furthermore, its divergent biology makes S. japonicus a valuable model organism in its own right. However, the currently available genome assembly contains gaps and has been unable to resolve centromeres and other repeat-rich chromosomal regions. Here we present a telomere-to-telomere long-read genome assembly of the S. japonicus genome. This includes the three megabase-length chromosomes, with centromeres hundreds of kilobases long, rich in 5S ribosomal RNA genes, transfer RNA genes, long terminal repeats, and short repeats. We identify a gene-sparse region on chromosome 2 that resembles a 331 kb centromeric duplication. We revise the genome size of S. japonicus to at least 16.6 Mb and possibly up to 18.12 Mb, at least 30% larger than previous estimates. Our whole genome assembly will support the growing S. japonicus research community and facilitate research in new directions, including centromere and DNA repeat evolution, and yeast comparative genomics.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Telômero/genética , Centrômero/genética
7.
Inorg Chem ; 63(21): 9363-9365, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38306455
8.
Chem Sci ; 15(5): 1810-1819, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303954

RESUMO

Complexes of the form [U(η6-arene)(BH4)3] where arene = C6H6; C6H5Me; C6H3-1,3,5-R3 (R = Et, iPr, tBu, Ph); C6Me6; and triphenylene (C6H4)3 were investigated towards an understanding of the nature of the uranium-arene interaction. Density functional theory (DFT) shows the interaction energy reflects the interplay between higher energy electron rich π-systems which drive electrostatic contributions, and lower energy electron poor π-systems which give rise to larger orbital contributions. The interaction is weak in all cases, which is consistent with the picture that emerges from a topological analysis of the electron density where metrics indicative of covalency show limited dependence on the nature of the ligand - the interaction is predominantly electrostatic in nature. Complete active space natural orbital analyses reveal low occupancy U-arene π-bonding interactions dominate in all cases, while δ-bonding interactions are only found with high-symmetry and electron-rich C6Me6. Finally, both DFT and multireference calculations on a reduced, formally U(ii), congener, [U(C6Me6)(BH4)3]-, suggests the electronic structure (S = 1 or 2), and hence metal oxidation state, of such a species cannot be deduced from structural features such as arene distortion alone. We show that arene geometry strongly depends on the spin-state of the complex, but that in both spin-states the complex is best described as U(iii) with an arene-centred radical.

9.
J Am Chem Soc ; 146(6): 4098-4111, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38301208

RESUMO

Organoplutonium chemistry was established in 1965, yet structurally authenticated plutonium-carbon bonds remain rare being limited to π-bonded carbocycle and σ-bonded isonitrile and hydrocarbyl derivatives. Thus, plutonium-carbenes, including alkylidenes and N-heterocyclic carbenes (NHCs), are unknown. Here, we report the preparation and characterization of the diphosphoniomethanide-plutonium complex [Pu(BIPMTMSH)(I)(µ-I)]2 (1Pu, BIPMTMSH = (Me3SiNPPh2)2CH) and the diphosphonioalkylidene-plutonium complexes [Pu(BIPMTMS)(I)(DME)] (2Pu, BIPMTMS = (Me3SiNPPh2)2C) and [Pu(BIPMTMS)(I)(IMe4)2] (3Pu, IMe4 = C(NMeCMe)2), thus disclosing non-actinyl transneptunium multiple bonds and transneptunium NHC complexes. These Pu-C double and dative bonds, along with cerium, praseodymium, samarium, uranium, and neptunium congeners, enable lanthanide-actinide and actinide-actinide comparisons between metals with similar ionic radii and isoelectronic 4f5 vs 5f5 electron-counts within conserved ligand fields over 12 complexes. Quantum chemical calculations reveal that the orbital-energy and spatial-overlap terms increase from uranium to neptunium; however, on moving to plutonium the orbital-energy matching improves but the spatial overlap decreases. The bonding picture that emerges is more complex than the traditional picture of the bonding of lanthanides being ionic and early actinides being more covalent but becoming more ionic left to right. Multiconfigurational calculations on 2M and 3M (M = Pu, Sm) account for the considerably more complex UV/vis/NIR spectra for 5f5 2Pu and 3Pu compared to 4f5 2Sm and 3Sm. Supporting the presence of Pu═C double bonds in 2Pu and 3Pu, 2Pu exhibits metallo-Wittig bond metathesis involving the highest atomic number element to date, reacting with benzaldehyde to produce the alkene PhC(H)═C(PPh2NSiMe3)2 (4) and "PuOI". In contrast, 2Ce and 2Pr do not react with benzaldehyde to produce 4.

10.
Data Brief ; 53: 110146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375141

RESUMO

African locust bean (Parkia biglobosa) is a multipurpose leguminous tree species of nutritional and pharmacological value. The plant is widely distributed in Africa and across Nigeria's major agroecological areas (AEAs). Amidst declining cultivation and production, P. biglobosa is genetically threatened in its natural habitats due to overexploitation, deforestation, wildfires and lack of improved tree management practices. Consequently, concerted research efforts directed towards germplasm collection and assessment of genetic relationships are imperative for conserving its genetic resources, sustainable management and selecting promising landraces for breeding programmes. The dataset presents rbcL intraspecific genetic diversity and population structure of 62 P. biglobosa landraces in Nigeria. A relatively high level of diversity and a low degree of nucleotide variability was observed among the landraces. Relatively high values of 642 total allele sites, 601 polymorphic sites, 504 parsimony information sites, 883 total number mutations, 9 haplotypes and 0.55 gene diversity were recorded for the sequence dataset. Low values of 0.35 nucleotide diversity and 5 InDels events were also recorded for the dataset. The gene flow in this dataset demonstrated an extensive exchange of genes between the three populations of P. biglobosa, which influenced the level of genetic differentiation (Gst) between the populations. Significantly low Gst (-0.01) was recorded between the Guinea and Sudan savannah populations, a moderate value (0.03) was recorded between the Sudan savannah and Rainforest populations and a higher Gst value (0.05) was recorded between the Guinea and Rainforest populations. The dataset highlights potential evolutionary dynamics that might influence variations relevant to the breeding and conservation of P. biglobosa in Nigeria and across its range in West and Central Africa.

11.
J Am Chem Soc ; 146(3): 2187-2195, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38216555

RESUMO

In recent years, optical pump-probe microscopy (PPM) has become a vital technique for spatiotemporally imaging electronic excitations and charge-carrier transport in metals and semiconductors. However, existing methods are limited by mechanical delay lines with a probe time window up to several nanoseconds (ns) or monochromatic pump and probe sources with restricted spectral coverage and temporal resolution, hindering their amenability in studying relatively slow processes. To bridge these gaps, we introduce a dual-hyperspectral PPM setup with a time window spanning from nanoseconds to milliseconds and single-nanosecond resolution. Our method features a wide-field probe tunable from 370 to 1000 nm and a pump spanning from 330 nm to 16 µm. We apply this PPM technique to study various two-dimensional metal-halide perovskites (2D-MHPs) as representative semiconductors by imaging their transient responses near the exciton resonances under both above-band gap electronic pump excitation and below-band gap vibrational pump excitation. The resulting spatially and temporally resolved images reveal insights into heat dissipation, film uniformity, distribution of impurity phases, and film-substrate interfaces. In addition, the single-nanosecond temporal resolution enables the imaging of in-plane strain wave propagation in 2D-MHP single crystals. Our method, which offers extensive spectral tunability and significantly improved time resolution, opens new possibilities for the imaging of charge carriers, heat, and transient phase transformation processes, particularly in materials with spatially varying composition, strain, crystalline structure, and interfaces.

12.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37205454

RESUMO

Bacterial resistance to antibiotics is a rapidly increasing threat to human health. New strategies to combat resistant organisms are desperately needed. One potential avenue is targeting two-component systems, which are the main bacterial signal transduction pathways used to regulate development, metabolism, virulence, and antibiotic resistance. These systems consist of a homodimeric membrane-bound sensor histidine kinase, and a cognate effector, the response regulator. The high sequence conservation in the catalytic and adenosine triphosphate-binding (CA) domain of histidine kinases and their essential role in bacterial signal transduction could enable broad-spectrum antibacterial activity. Through this signal transduction, histidine kinases regulate multiple virulence mechanisms including toxin production, immune evasion, and antibiotic resistance. Targeting virulence, as opposed to development of bactericidal compounds, could reduce evolutionary pressure for acquired resistance. Additionally, compounds targeting the CA domain have the potential to impair multiple two-component systems that regulate virulence in one or more pathogens. We conducted structure-activity relationship studies of 2-aminobenzothiazole-based inhibitors designed to target the CA domain of histidine kinases. We found these compounds have anti-virulence activities in Pseudomonas aeruginosa, reducing motility phenotypes and toxin production associated with the pathogenic functions of this bacterium.

13.
Yeast ; 41(3): 95-107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38146786

RESUMO

The fission yeast species Schizosaccharomyces japonicus is currently divided into two varieties-S. japonicus var. japonicus and S. japonicus var. versatilis. Here we examine the var. versatilis isolate CBS5679. The CBS5679 genome shows 88% identity to the reference genome of S. japonicus var. japonicus at the coding sequence level, with phylogenetic analyses suggesting that it has split from the S. japonicus lineage 25 million years ago. The CBS5679 genome contains a reciprocal translocation between chromosomes 1 and 2, together with several large inversions. The products of genes linked to the major translocation are associated with 'metabolism' and 'cellular assembly' ontology terms. We further show that CBS5679 does not generate viable progeny with the reference strain of S. japonicus. Although CBS5679 shares closer similarity to the 'type' strain of var. versatilis as compared to S. japonicus, it is not identical to the type strain, suggesting population structure within var. versatilis. We recommend that the taxonomic status of S. japonicus var. versatilis is raised, with it being treated as a separate species, Schizosaccharomyces versatilis.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Filogenia , Evolução Biológica
14.
Cell ; 186(24): 5237-5253.e22, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37944512

RESUMO

Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.


Assuntos
Cromossomos Artificiais de Levedura , Genoma Fúngico , Saccharomyces cerevisiae , Perfilação da Expressão Gênica , Proteômica , Saccharomyces cerevisiae/genética , Biologia Sintética , RNA de Transferência/genética , Cromossomos Artificiais de Levedura/genética
15.
Inorg Chem ; 62(44): 18136-18149, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37875401

RESUMO

The pursuit of a trivalent plutonium halide phosphine oxide compound, e.g., "PuBr3(OPR)3," instead led to the isolation of the tetravalent trans-PuIVBr4(OPCy3)2, PuBr/Cy, compound by spontaneous oxidation of PuIII. The donating nature of phosphine oxides has allowed the isolation and characterization of PuBr/Cy by crystallographic, multinuclear NMR, solid state, and solution phase UV-vis-NIR spectroscopic techniques. The presence of a putative plutonyl(VI) complex formulated as "trans-PuVIO2Br2(OPCy3)2" was also observed spectroscopically and tentatively by single-crystal X-ray diffraction as a cocrystal of PuBr/Cy. A series of trans-ThX4(OPCy3)2 (X = Cl, ThCl/Cy; Br, ThBr/Cy; I, ThI/Cy) complexes were synthesized for comparison to PuBr/Cy. The triphenylphosphine oxide, OPPh3, complexes, trans-AnI4(OPPh3)2 (An = Th, ThI/Ph; U, UI/Ph), were also synthesized for comparison, completing the series trans-UX4(OPPh3)2 (X = Cl, Br, I), UX/Ph. To enable the synthesis of ThI/Cy and ThI/Ph, a new nonaqueous thorium iodide starting material, ThI4(Et2O)2, was synthesized. The syntheses of organic solvent soluble ThI4L2 (L = Et2O, OPCy3, and OPPh3) are the first examples of crystallographically characterized neutral thorium tetraiodide materials beyond binary ThI4. To show the viability of ThI4(Et2O)2 as a starting material for organothorium chemistry, (C5Me4H)3ThI was synthesized and crystallographically characterized.

16.
J Environ Manage ; 346: 119007, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742568

RESUMO

Environmental management in coastal ecosystems has been challenged by the complex cumulative effects that occur when many small issues result in large ecological shifts. Current environmental management of these spaces focuses on identifying and limiting problematic stressors via a series of assessment techniques. Whilst there is a strong desire among managers to consider complexity in ecological responses to cumulative effects, current approaches for assessing risk focus on breaking down the issues into multiple cause and effect relationships. However, uncertainty arises when data and information for a place are limited, as is commonly the case, and this creates decision paralysis while more information is generated. Here, we discuss how ecological understanding of network interactions in coastal marine ecosystems can be used as a lens to bring together multiple lines of evidence and create actions. We list and describe four characteristics of marine ecosystem interaction networks including the possibility for; 1) indirect effects, 2) effects that emerge as stressor magnitude increases the number of network components implicated, 3) network interactions that amplify these indirect effects, and 4) feedbacks that reinforce or stabilise against indirect effects. We then link these four characteristics to three case studies of common coastal environmental issues to demonstrate how a general understanding of ecological interaction networks can enhance priorities for stressor management that can be applied even when specific data is limited.


Assuntos
Ecossistema
17.
Parasitology ; 150(11): 979-989, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37681253

RESUMO

The factors that influence parasite associated bacterial microbial diversity and the geographic distributions of bacteria are not fully understood. In an effort to gain a deeper understanding of the relationship between the bacterial diversity of Ctenocephalides fleas and host species and the external environment, we conducted a metagenetic analysis of 107 flea samples collected from 8 distinct sampling sites in South Africa. Pooled DNA samples mostly comprising of 2 or 3 individuals sampled from the same host, and belonging to the same genetic cluster, were sequenced using the Ion PGM™ Hi-Q™ Kit and the Ion 316™ Chip v2. Differences were detected in the microbiome compositions between Ctenocephalides felis, Ctenocephalides canis and Ctenocephalides connatus. Although based on a small sample, C. connatus occurring on wildlife harboured a higher bacterial richness when compared to C. felis on domestic animals. Intraspecific differences in the microbial OTU diversity were detected within C. f. felis that occurred on domestic cats and dogs. Different genetic lineages of C. f. felis were similar in microbial compositions but some differences exist in the presence or absence of rare bacteria. Rickettsia and Bartonella OTU's identified in South African cat fleas differ from those identified in the USA and Australia. Intraspecific microbial compositions also differ across geographic sampling sites. Generalized dissimilarity modelling showed that temperature and humidity are potentially important environmental factors explaining the pattern obtained.


Assuntos
Doenças do Gato , Ctenocephalides , Felis , Infestações por Pulgas , Sifonápteros , Animais , Gatos , Cães , África do Sul , Infestações por Pulgas/epidemiologia , Infestações por Pulgas/veterinária , Doenças do Gato/parasitologia
18.
Nano Lett ; 23(15): 7150-7156, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37477493

RESUMO

Alkali metals have low optical losses in the visible to near-infrared (NIR) compared with noble metals. However, their high reactivity prohibits the exploration of their optical properties. Recently sodium (Na) has been experimentally demonstrated as a low-loss plasmonic material. Here we report on a thermo-assisted nanoscale embossing (TANE) technique for fabricating plasmonic nanostructures from pure potassium (K) and NaK liquid alloys. We show high-quality-factor resonances from K as narrow as 15 nm in the NIR, which we attribute to the high material quality and low optical loss. We further demonstrate liquid Na-K plasmonics by exploiting the Na-K eutectic phase diagram. Our study expands the material library for alkali metal plasmonics and liquid plasmonics, potentially enabling a range of new material platforms for active metamaterials and photonic devices.

19.
J Frailty Aging ; 12(3): 189-197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37493379

RESUMO

BACKGROUND: The number of people aged 80 years and older (80+) will increase drastically in the upcoming decades. The preservation of cognitive functions will contribute to their quality of life and independence. OBJECTIVES: To identify determinants of cognition and predictors of change in cognitive performance in the population 80+. DESIGN: Cross-sectional and longitudinal population-based on the representative NRW80+ survey. SETTING: Randomly drawn cases of people aged 80+ from the municipal registration offices, including people living in private homes and institutional settings. PARTICIPANTS: The participants in the cross-sectional sample (N=1503, 65.5%female) were 84.7 years old (95%CI[84.5,85.0]) and had 12.3 years of education (95%CI[12.1,12.4]). The participants in the longitudinal sample (N=840, 62.5%female) were 84.9 years old (95%CI[84.6,85.2]) and had 12.3 years of education (95%CI[12.0,12.5]). MEASUREMENTS: The cognitive screening DemTect, age, sex, education, and social, physical, and cognitive lifestyle activities, as well as subjective general health status and depressive symptoms, were assessed at baseline and 24-month follow-up. RESULTS: Younger age, more years of education, and more cognitive lifestyle activities were identified as the most consistent determinants of both better cognitive performance and preservation of cognitive performance for both global cognition as well as the DemTect subtests on memory and executive functions. CONCLUSIONS: Our findings reveal that commonly investigated determinants of, and change in, cognitive performance are valid for the people 80+ and highlight the importance of cognitive lifestyle activities for cognitive health. The maintenance of cognitive functions is a key aspect of healthy aging in terms of preserving independence in people 80+.


Assuntos
Cognição , Qualidade de Vida , Idoso de 80 Anos ou mais , Feminino , Humanos , Estudos Transversais , Função Executiva , Estilo de Vida , Estudos Longitudinais , Masculino
20.
Chem Sci ; 14(27): 7438-7446, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449075

RESUMO

Reaction of the terphenyl bis(anilide) ligand [{K(DME)2}2LAr] (LAr = {C6H4[(2,6-iPr2C6H3)NC6H4]2}2-) with trivalent chloride "MCl3" salts (M = Ce, U, Np) yields two distinct products; neutral LArM(Cl)(THF) (1M) (M = Np, Ce), and the "-ate" complexes [K(DME)2][(LAr)Np(Cl)2] (2Np) or ([LArM(Cl)2(µ-K(X)2)])∞ (2Ce, 2U) (M = Ce, U) (X = DME or Et2O) (2M). Alternatively, analogous reactions with the iodide [MI3(THF)4] salts provide access to the neutral compounds LArM(I)(THF) (3M) (M = Ce, U, Np, Pu). All complexes exhibit close arene contacts suggestive of η6-interactions with the central arene ring of the terphenyl backbone, with 3M comprising the first structurally characterized Pu η6-arene moiety. Notably, the metal-arene bond metrics diverge from the predicted trends of metal-carbon interactions based on ionic radii, with the uranium complexes exhibiting the shortest M-Ccentroid distance in all cases. Overall, the data presents a systematic study of f-element M-η6-arene complexes across the early actinides U, Np, Pu, and comparison to cerium congeners.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA