Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(13): 5995-6000, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850525

RESUMO

Clustering is concerned with coherently grouping observations without any explicit concept of true groupings. Spectral graph clustering-clustering the vertices of a graph based on their spectral embedding-is commonly approached via K-means (or, more generally, Gaussian mixture model) clustering composed with either Laplacian spectral embedding (LSE) or adjacency spectral embedding (ASE). Recent theoretical results provide deeper understanding of the problem and solutions and lead us to a "two-truths" LSE vs. ASE spectral graph clustering phenomenon convincingly illustrated here via a diffusion MRI connectome dataset: The different embedding methods yield different clustering results, with LSE capturing left hemisphere/right hemisphere affinity structure and ASE capturing gray matter/white matter core-periphery structure.

2.
PLoS One ; 10(4): e0121002, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25886624

RESUMO

Quadratic assignment problems arise in a wide variety of domains, spanning operations research, graph theory, computer vision, and neuroscience, to name a few. The graph matching problem is a special case of the quadratic assignment problem, and graph matching is increasingly important as graph-valued data is becoming more prominent. With the aim of efficiently and accurately matching the large graphs common in big data, we present our graph matching algorithm, the Fast Approximate Quadratic assignment algorithm. We empirically demonstrate that our algorithm is faster and achieves a lower objective value on over 80% of the QAPLIB benchmark library, compared with the previous state-of-the-art. Applying our algorithm to our motivating example, matching C. elegans connectomes (brain-graphs), we find that it efficiently achieves performance.


Assuntos
Algoritmos , Caenorhabditis elegans/fisiologia , Animais , Conectoma
3.
PLoS One ; 7(7): e39618, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815711

RESUMO

Although figures in scientific articles have high information content and concisely communicate many key research findings, they are currently under utilized by literature search and retrieval systems. Many systems ignore figures, and those that do not typically only consider caption text. This study describes and evaluates a fully automated approach for associating figures in the body of a biomedical article with sentences in its abstract. We use supervised methods to learn probabilistic language models, hidden Markov models, and conditional random fields for predicting associations between abstract sentences and figures. Three kinds of evidence are used: text in abstract sentences and figures, relative positions of sentences and figures, and the patterns of sentence/figure associations across an article. Each information source is shown to have predictive value, and models that use all kinds of evidence are more accurate than models that do not. Our most accurate method has an F1-score of 69% on a cross-validation experiment, is competitive with the accuracy of human experts, has significantly better predictive accuracy than state-of-the-art methods and enables users to access figures associated with an abstract sentence with an average of 1.82 fewer mouse clicks. A user evaluation shows that human users find our system beneficial. The system is available at http://FigureItOut.askHERMES.org.


Assuntos
Indexação e Redação de Resumos , Pesquisa Biomédica , Comunicação , Gráficos por Computador/estatística & dados numéricos , Publicações/estatística & dados numéricos , Cadeias de Markov , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA