Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Ophthalmol Ther ; 13(4): 979-994, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345711

RESUMO

INTRODUCTION: To investigate the long-term outcomes of emergency penetrating keratoplasty using cryopreserved human donor corneas in the management of actual or imminent corneal perforation. METHODS: A retrospective analysis was performed of the treatment efficacy of emergency penetrating keratoplasty using a cryopreserved human donor cornea, in 14 eyes of 14 patients with corneal ulcers of different etiology. For comparison, the medical histories of 14 patients who had undergone penetrating keratoplasty with the same indication, but received a regularly processed human corneal graft, were retrospectively analyzed. In both groups, the primary endpoint for graft failure was repeat surgery, defined as the necessity for amniotic membrane transplantation, conjunctival flap, or repeat penetrating keratoplasty, during a follow-up time of maximally 12 months. RESULTS: The difference in the need for repeated surgeries between the cryopreserved human donor cornea group and cultivated tissue graft group was not statistically significant (p = 0.835). Specifically, repeat complex surgery of any kind within 6 months was necessary in 50% of the cryopreserved cornea group and in 57.1% of the control group, with no further surgical interventions during the remainder of the follow-up period. However, repeat penetrating keratoplasty occurred more frequently in the cryopreserved cornea group (n = 5) than in the control group (n = 1) during the first 12 months after treatment (p = 0.048). CONCLUSION: Cryopreserved corneas appear to be a viable option for promptly addressing emergencies and stabilizing the corneal situation, providing a faster solution compared to waiting for fresh tissue availability. However, repeat penetrating keratoplasty is more frequent when cryopreserved human donor corneas are used. Cryopreserved human donor corneas may be useful if surgical treatment is urgent and alternative options, such as tissue use, a conjunctival flap, or multilayer amniotic membrane transplantation, are not available.

2.
Sensors (Basel) ; 24(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257479

RESUMO

Effective damage identification is paramount to evaluating safety conditions and preventing catastrophic failures of concrete structures. Although various methods have been introduced in the literature, developing robust and reliable structural health monitoring (SHM) procedures remains an open research challenge. This study proposes a new approach utilizing a 1-D convolution neural network to identify the formation of cracks from the raw electromechanical impedance (EMI) signature of externally bonded piezoelectric lead zirconate titanate (PZT) transducers. Externally bonded PZT transducers were used to determine the EMI signature of fiber-reinforced concrete specimens subjected to monotonous and repeatable compression loading. A leave-one-specimen-out cross-validation scenario was adopted for the proposed SHM approach for a stricter and more realistic validation procedure. The experimental study and the obtained results clearly demonstrate the capacity of the introduced approach to provide autonomous and reliable damage identification in a PZT-enabled SHM system, with a mean accuracy of 95.24% and a standard deviation of 5.64%.

3.
Mol Genet Metab ; 141(3): 108124, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244287

RESUMO

AICA ribosiduria is an ultra-rare disorder of de novo purine biosynthesis associated with developmental delay of varying severity, seizures, and varying degrees of visual impairment due to chorioretinal atrophy. Caused by biallelic pathogenic variants in ATIC, accumulation of AICA-riboside is the biochemical hallmark and presumed pathomechanism of the condition. In this study, we report the case of a teenage patient compound-heterozygous for the variants c.1277 A > G (p.K426R) and c.642G > C (p.Q214H) in ATIC, with the latter not previously reported. Excessive secretion of AICA-riboside and succinyladenosine was significantly reduced following the introduction of a purine-enriched diet. By suppressing de novo purine biosynthesis in favour of purine salvage, exogenous purine substitution represents a promising treatment approach for AICA ribosiduria. SYNOPSIS: Suppression of de novo purine biosynthesis by increased exogeneous purine supply leads to decreased accumulation of AICA-riboside and succinyl-adenosine and thus is a promising treatment approach for AICA ribosiduria.


Assuntos
Purinas , Humanos , Adolescente
5.
J Dtsch Dermatol Ges ; 21(6): 703-704, 2023 06.
Artigo em Alemão | MEDLINE | ID: mdl-37338829
6.
Sci Adv ; 9(18): eadd6071, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146134

RESUMO

A preclinical evaluation using a regenerative medicine methodology comprising an additively manufactured medical-grade ε-polycaprolactone ß-tricalcium phosphate (mPCL-TCP) scaffold with a corticoperiosteal flap was undertaken in eight sheep with a tibial critical-size segmental bone defect (9.5 cm3, M size) using the regenerative matching axial vascularization (RMAV) approach. Biomechanical, radiological, histological, and immunohistochemical analysis confirmed functional bone regeneration comparable to a clinical gold standard control (autologous bone graft) and was superior to a scaffold control group (mPCL-TCP only). Affirmative bone regeneration results from a pilot study using an XL size defect volume (19 cm3) subsequently supported clinical translation. A 27-year-old adult male underwent reconstruction of a 36-cm near-total intercalary tibial defect secondary to osteomyelitis using the RMAV approach. Robust bone regeneration led to complete independent weight bearing within 24 months. This article demonstrates the widely advocated and seldomly accomplished concept of "bench-to-bedside" research and has weighty implications for reconstructive surgery and regenerative medicine more generally.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Masculino , Animais , Ovinos , Projetos Piloto , Osso e Ossos , Tíbia
7.
Sensors (Basel) ; 23(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904609

RESUMO

The current paper presents the results of an experimental study of carbon nano-, micro-, and hybrid-modified cementitious mortar to evaluate mechanical performance, energy absorption, electrical conductivity, and piezoresistive sensibility. Three amounts of single-walled carbon nanotubes (SWCNTs), namely 0.05 wt.%, 0.1 wt.%, 0.2 wt.%, and 0.3 wt.% of the cement mass, were used to prepare nano-modified cement-based specimens. In the microscale modification, 0.05 wt.%, 0.5 wt.%, 1.0 wt.% carbon fibers (CFs) were incorporated in the matrix. The hybrid-modified cementitious specimens were enhanced by adding optimized amounts of CFs and SWCNTs. The smartness of modified mortars, indicated by their piezoresistive behavior, was investigated by measuring the changes in electrical resistivity. The effective parameters that enhance the composites' mechanical and electrical performance are the different concentrations of reinforcement and the synergistic effect between the types of reinforcement used in the hybrid structure. Results reveal that all the strengthening types improved flexural strength, toughness, and electrical conductivity by about an order of magnitude compared to the reference specimens. Specifically, the hybrid-modified mortars presented a marginal reduction of 1.5% in compressive strength and an increase in flexural strength of 21%. The hybrid-modified mortar absorbed the most energy, 1509%, 921%, and 544% more than the reference mortar, nano-modified mortar, and micro-modified mortar, respectively. The change rate of impedance, capacitance, and resistivity in piezoresistive 28-day hybrid mortars improved the tree ratios by 289%, 324%, and 576%, respectively, for nano-modified mortars and by 64%, 93%, and 234%, respectively, for micro-modified mortars.

8.
Polymers (Basel) ; 15(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36771774

RESUMO

Traditional methods for estimating structural deterioration are generally costly and inefficient. Recent studies have demonstrated that implementing a network of piezoelectric transducers mounted to critical regions of concrete structural members substantially increases the efficacy of the structural health monitoring (SHM) method. This study uses a recently developed electro-mechanical-admittance (EMA)-based SHM system for real-time damage diagnosis of carbon FRP (C-FRP) ropes installed as shear composite reinforcement in RC deep beams. The applied SHM technique uses the frequency response measurements of a network of piezoelectric lead zirconate titanate (PZT) patches. The proposed strengthening methods using C-FRP ropes as ETS and NSM shear reinforcement and the applied anchorage techniques significantly enhanced the strength and the overall performance of the examined beams. The retrofitted beams exhibited increased shear capacity and improved post-peak response with substantial ductility compared with the brittle failure of the non-strengthened specimens. The health condition and the potential debonding failure of the applied composite fiber material were also examined and quantified using the proposed SHM technique. Damage quantification of C-FRP ropes is achieved by comparing and assessing the values of several statistical damage indices. The experimental results demonstrated that the proposed monitoring system successfully diagnosed the region where the damage occurred by providing early warning of the forthcoming critical shear cracking of concrete and C-FRP rope debonding failures. Furthermore, the internal PZT transducers showed sound indications of the C-FRP rope's health condition, demonstrating a direct correlation with the mechanical performance of the fibers.

9.
Aging Dis ; 14(1): 184-203, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36818570

RESUMO

Lipofuscin (LF) accumulates during lifetime in the retinal pigment epithelium (RPE) and is thought to play a crucial role in intermediate and late age-related macular degeneration (AMD). In an attemt to simulate aged retina and to study response of retinal microglia and RPE cells to LF, we injected a suspension of LF into the subretinal space of adult mice. LF suspension was obtained from human donor eyes. Subretinal injection of PBS or sham injection served as a control. Eyes were inspected by autofluorescence and optical coherence tomography, by electroretinography and on histological and ultrastructural levels. Levels of cytokine mRNA were determined by quantitative PCR separately in the RPE/choroid complex and in the retina. After injection of LF, microglial cells migrated quickly into the subretinal space to close proximity to RPE cells and phagocytosed LF particles. Retinal function was affected only slightly by LF within the first two weeks. After longer time, RPE cells showed clear signs of melanin loss and degradation. Levels of mRNA of inflammatory cytokines increased sharply after injection of both PBS and LF and were higher in the RPE/choroid complex than in the retina and were slightly higher after LF injection. In conclusion, subretinal injection of LF causes an activation of microglial cells and their migration into subretinal space, enhanced expression of inflammatory cytokines and a gradual degradation of RPE cells. These features are found also in an aging retina, and subretinal injection of LF could be a model for intermediate and late AMD.

10.
Aging Dis ; 14(1): 184-203, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36818572

RESUMO

Lipofuscin (LF) accumulates during lifetime in the retinal pigment epithelium (RPE) and is thought to play a crucial role in intermediate and late age-related macular degeneration (AMD). In an attemt to simulate aged retina and to study response of retinal microglia and RPE cells to LF, we injected a suspension of LF into the subretinal space of adult mice. LF suspension was obtained from human donor eyes. Subretinal injection of PBS or sham injection served as a control. Eyes were inspected by autofluorescence and optical coherence tomography, by electroretinography and on histological and ultrastructural levels. Levels of cytokine mRNA were determined by quantitative PCR separately in the RPE/choroid complex and in the retina. After injection of LF, microglial cells migrated quickly into the subretinal space to close proximity to RPE cells and phagocytosed LF particles. Retinal function was affected only slightly by LF within the first two weeks. After longer time, RPE cells showed clear signs of melanin loss and degradation. Levels of mRNA of inflammatory cytokines increased sharply after injection of both PBS and LF and were higher in the RPE/choroid complex than in the retina and were slightly higher after LF injection. In conclusion, subretinal injection of LF causes an activation of microglial cells and their migration into subretinal space, enhanced expression of inflammatory cytokines and a gradual degradation of RPE cells. These features are found also in an aging retina, and subretinal injection of LF could be a model for intermediate and late AMD.

11.
Polymers (Basel) ; 15(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36679160

RESUMO

The favorable contribution of externally bonded fiber-reinforced polymer (EB-FRP) sheets to the shear strengthening of reinforced concrete (RC) beams is widely acknowledged. Nonetheless, the premature debonding of EB-FRP materials remains a limitation for widespread on-site application. Once debonding appears, it is highly likely that brittle failure will occur in the strengthened RC structural member; therefore, it is essential to be alerted of the debonding incident immediately and to intervene. This may not be always possible, particularly if the EB-FRP strengthened RC member is located in an inaccessible area for fast inspection, such as bridge piers. The ability to identify debonding immediately via remote control would contribute to the safer application of the technique by eliminating the negative outcomes of debonding. The current investigation involves the detection of EB-FRP sheet debonding using a remotely controlled electromechanical admittance (EMA)-based structural health monitoring (SHM) system that utilizes piezoelectric lead zirconate titanate (PZT) sensors. An experimental investigation on RC T-beams strengthened for shear with EB-FRP sheets has been performed. The PZT sensors are installed at various locations on the surface of the EB-FRP sheets to evaluate the SHM system's ability to detect debonding. Additionally, strain gauges were attached on the surface of the EB-FRP sheets near the PZT sensors to monitor the deformation of the FRP and draw useful conclusions through comparison of the results to the wave-based data provided by the PZT sensors. The experimental results indicate that although EB-FRP sheets increase the shear resistance of the RC T-beams, premature failure occurs due to sheet debonding. The applied SHM system can sufficiently identify the debonding in real-time and appears to be feasible for on-site applications.

12.
Sci Rep ; 13(1): 940, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653432

RESUMO

A novel laboratory platform has been designed and built for the irradiation of a plasma crystal (PC) with an electron beam (e-beam) having an energy around 10 keV and a current of tens of milliamperes. The pulsed e-beam collimated to a few millimeter-size spot is aimed at a crystal made of dust particles levitated in a radio-frequency (RF) plasma. The platform consists of three vacuum chambers connected in-line, each with different utility: one for generating free electrons in a pulsed hollow-anode Penning discharge, another for the extraction and acceleration of electrons at [Formula: see text] kV and for focusing the e-beam in the magnetic field of a pair of circular coils, and the last one for producing PCs above a RF-driven electrode. The main challenge is to obtain both a stable e-beam and PC by insuring appropriate gas pressures, given that the e-beam is formed in high vacuum ([Formula: see text] Torr), while the PC is produced at much higher pressures ([Formula: see text] Torr). The main diagnostics include a high speed camera, a Faraday cup and a Langmuir probe. Two applications concerned with the creation of a pair of dust flow vortices and the rotation of a PC by the drag force of the e-beam acting on the strongly coupled dust particles are presented. The dust flow can become turbulent as demonstrated by the energy spectrum, featuring vortices at different space scales.

13.
Sensors (Basel) ; 22(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36365992

RESUMO

Recent research has indicated that the implantation of a network of piezoelectric transducer patches in element regions of potential damage development, such as the beam-column joint (BCJ) area, substantially increases the efficacy and accuracy of the structural health monitoring (SHM) methods to identify damage level, providing a reliable diagnosis. The use of piezoelectric lead zirconate titanate (PZT) transducers for the examination of the efficiency of an innovative strengthening technique of reinforced concrete (RC) columns and BCJs is presented and commented on. Two real-scale RC BCJ subassemblages were constructed for this investigation. The columns and the joint panel of the second subassemblage were externally strengthened with carbon fiber-reinforced polymer (C-FRP) ropes. To examine the efficiency of this strengthening technique we used the following transducers: (a) PZT sensors on the ropes and the concrete; (b) tSring linear variable displacement transducers (SLVDTs), diagonally installed on the BCJ, to measure the shear deformations of the BCJ panel; (c) Strain gauges on the internal steel bars. From the experimental results, it became apparent that the PZT transducers successfully diagnosed the loading step at which the primary damage occurred in the first BCJ subassemblage and the damage state of the strengthened BCJ during the loading procedure. Further, data acquired from the diagonal SLVDTs and the strain gauges provided insight into the damage state of the two tested specimens at each step of the loading procedure and confirmed the diagnosis provided by the PZT transducers. Furthermore, data acquired by the PZT transducers, SLVDTs and strain gauges proved the effectiveness of the applied strengthening technique with C-FRP ropes externally mounted on the column and the conjunction area of the examined BCJ subassemblages.


Assuntos
Transdutores , Zircônio , Zircônio/química , Titânio/química , Polímeros/química
14.
Materials (Basel) ; 14(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34300808

RESUMO

Torsional behavior and analysis of steel fiber reinforced concrete (SFRC) beams is investigated in this paper. The purpose of this study is twofold; to examine the torsion strength models for SFRC beams available in the literature and to address properly verified design formulations for SFRC beams under torsion. A total of 210 SFRC beams tested under torsion from 16 different experimental investigations around the world are compiled. The few strength models available from the literature are adapted herein and used to calculate the torsional strength of the beams. The predicted strength is compared with the experimental values measured by the performed torsional tests and these comparisons showed a room for improvement. First, a proposed model is based on optimizing the constants of the existing formulations using multi-linear regression. Further, a second model is proposed, which is based on modifying the American Concrete Institute (ACI) design code for reinforced concrete (RC) members to include the effect of steel fibers on the torsional capacity of SFRC beams. Applications of the proposed models showed better compliance and consistency with the experimental results compared to the available design models providing safe and verified predictions. Further, the second model implements the ACI code for RC using a simple and easy-to-apply formulation.

15.
Sensors (Basel) ; 21(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498337

RESUMO

The utilization and effectiveness of a custom-made, portable and low-cost structural health monitoring (SHM) system that implements the PZT-based electro-mechanical admittance (EMA) methodology for the detection and evaluation of the damage of flexural reinforced concrete (RC) beams is presented. Tests of large-scale beams under monotonic and cyclic reversal-imposed deformations have been carried out using an integrated wireless impedance/admittance monitoring system (WiAMS) that employs the voltage measurements of PZT transducers. Small-sized PZT patches that have been epoxy-bonded on the steel bars surface and on the external concrete face of the beams are utilized to diagnose damages caused by steel yielding and concrete cracking. Excitations and simultaneous measurements of the voltage signal responses of the PZT transducers have been carried out at different levels of the applied load during the tests using the developed SHM devices, which are remotely controlled by a terminal emulator. Each PZT output voltage versus frequency response is transferred wireless and in real-time. Statistical index values are calculated based on the signals of the PZT transducers to represent the differences between their baseline response at the healthy state of the beam and their response at each loading/damage level. Finite Element Modeling (FEM) simulation of the tested beams has also been performed to acquire numerical results concerning the internal cracks, the steel strains and the energy dissipation and instability parameters. FEM analyses are used to verify the experimental results and to support the visual observations for a more precise damage evaluation. Findings of this study indicate that the proposed SHM system with the implementation of two different PZT transducer settings can be effectively utilized for the assessment of structural damage caused by concrete cracking and steel yielding in flexural beams under monotonic and cyclic loading.

16.
Curr Eye Res ; 46(5): 666-671, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33016144

RESUMO

INTRODUCTION: Since the beginning of the COVID-19 pandemic there has been some debate regarding the risk of transmission through tissue transplantation and tissue banking processes. AIM OF THE STUDY: To analyze the changes that SARS-CoV-2 has caused regarding the harvesting of corneal donor tissue and eye bank activities in Germany. METHODS: A questionnaire was provided to 26 eye banks in Germany, consisting of questions about adaptations made in the screening of potential donors and the harvesting of corneal tissue following the pandemic spread of SARS-CoV-2. RESULTS: Eighteen eye banks actively reduced recruitment of donors and two banks ceased all activity. Additional diagnostic screening was performed in eight banks, using conjunctival swabs and/or nasopharyngeal swabs. In six eye banks, additional protective measures, such as FFP2 masks and/or facial shields, were implemented. Overall, a mean reduction in the number of obtained donor tissues of 17% was observed. DISCUSSION: Conjunctival and/or nasopharyngeal swabs of donors have been implemented by a minority. Reasons for not performing additional tests may be moderate sensitivity and lack of validation for postmortem use of RT-PCR testing. Also, the hazard of SARS-CoV-2 entering the corneal donor pool with subsequent transmission might be perceived as theoretical. Face shields provide a sufficient barrier against splash and splatter contamination but may be insufficient against aerosols. Additional face masks would provide support against aerosols, but it remains debatable if corneal harvesting can be considered an aerosol-producing procedure. In the future we expect to see changes in current guidelines because of a surge in scientific activities to improve our understanding of the risks involved with cornea donation in the COVID-19 pandemic, and because current practice may reduce the availability of donor corneas due to new exclusion criteria while the demand remains unchanged.


Assuntos
COVID-19/transmissão , Transplante de Córnea , Transmissão de Doença Infecciosa/prevenção & controle , Bancos de Olhos/métodos , SARS-CoV-2 , Doenças da Córnea/cirurgia , Bancos de Olhos/normas , Alemanha/epidemiologia , Humanos , Contramedidas Médicas , Guias de Prática Clínica como Assunto , Quarentena/estatística & dados numéricos , Medição de Risco , Inquéritos e Questionários , Doadores de Tecidos/estatística & dados numéricos , Coleta de Tecidos e Órgãos , Obtenção de Tecidos e Órgãos
18.
Infection ; 49(3): 427-436, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33141393

RESUMO

PURPOSE: We investigated the value of preoperative pathogen detection and evaluated its concordance with intraoperative cultures in patients with culture-positive periprosthetic joint infection (PJI). METHODS: Culture-positive PJI episodes with available preoperative (synovial fluid) and intraoperative cultures (periprosthetic tissue, synovial or sonication fluid) were analyzed. The pathogen detection rate in preoperative and intraoperative cultures was compared using Fisher's exact test and their concordance was calculated. RESULTS: Among 167 included PJI episodes, 150 were monomicrobial with coagulase-negative staphylococci (n = 55, 37%), S. aureus (n = 34, 23%), and streptococci (n = 21, 14%) being the most common pathogens. Seventeen episodes (10%) were polymicrobial infections. The pathogen(s) grew in preoperative culture in 110 and in intraoperative cultures in 153 episodes (66% vs. 92%, p < 0.001). The pathogen detection rate was lower in preoperative compared to intraoperative cultures for low-virulent pathogens (40% vs. 94%, p < 0.001), polymicrobial infections (59% vs. 100%, p = 0.007), and in delayed and late PJI (63% vs. 94%, and 66% vs. 91%, respectively, p < 0.001). Full concordance of preoperative and intraoperative cultures was found in 87 episodes (52%). The pathogen was detected solely preoperatively in 14 episodes (8%) and solely intraoperatively in 57 cases (34%); an additional pathogen was found in 3 episodes (2%) preoperatively and in 6 episodes (4%) intraoperatively. CONCLUSION: The concordance of preoperative and intraoperative cultures was poor (52%). The sole or an additional pathogen was found exclusively in intraoperative cultures in 38% of PJI episodes, hence preoperative synovial fluid cultures are considered unreliable for pathogen detection in PJI.


Assuntos
Artroplastia de Quadril , Infecções Relacionadas à Prótese , Humanos , Infecções Relacionadas à Prótese/diagnóstico , Infecções Relacionadas à Prótese/cirurgia , Sensibilidade e Especificidade , Staphylococcus aureus , Líquido Sinovial
19.
Sensors (Basel) ; 21(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375087

RESUMO

This manuscript introduces a programable active bone fixator system that enables systematic investigation of bone healing processes in a sheep animal model. In contrast to previous systems, this solution combines the ability to precisely control the mechanical conditions acting within a fracture with continuous monitoring of the healing progression and autonomous operation of the system throughout the experiment. The active fixator system was implemented on a double osteotomy model that shields the experimental fracture from the influence of the animal's functional loading. A force sensor was integrated into the fixator to continuously measure stiffness of the repair tissue as an indicator for healing progression. A dedicated control unit was developed that allows programing of different loading protocols which are later executed autonomously by the active fixator. To verify the feasibility of the system, it was implanted in two sheep with different loading protocols, mimicking immediate and delayed weight-bearing, respectively. The implanted devices operated according to the programmed protocols and delivered seamless data over the whole course of the experiment. The in vivo trial confirmed the feasibility of the system. Hence, it can be applied in further preclinical studies to better understand the influence of mechanical conditions on fracture healing.


Assuntos
Fixadores Externos , Fraturas Ósseas , Animais , Técnicas Biossensoriais , Consolidação da Fratura , Osteotomia , Ovinos , Estresse Mecânico
20.
Materials (Basel) ; 13(12)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545721

RESUMO

This paper investigates the ability of steel fibers to enhance the short-term behavior and flexural performance of realistic steel fiber-reinforced concrete (SFRC) structural members with steel reinforcing bars and stirrups using nonlinear 3D finite element (FE) analysis. Test results of 17 large-scale beam specimens tested under monotonic flexural four-point loading from the literature are used as an experimental database to validate the developed nonlinear 3D FE analysis and to study the contributions of steel fibers on the initial stiffness, strength, deformation capacity, cracking behavior, and residual stress. The examined SFRC beams include various ratios of longitudinal reinforcement (0.3%, 0.6%, and 1.0%) and steel fiber volume fractions (from 0.3% to 1.5%). The proposed FE analysis employs the nonlinearities of the materials with new and established constitutive relationships for the SFRC under compression and tension based on experimental data. Especially for the tensional response of SFRC, an efficient smeared crack approach is proposed that utilizes the fracture properties of the material utilizing special stress versus crack width relations with tension softening for the post-cracking SFRC tensile response instead of stress-strain laws. The post-cracking tensile behavior of the SFRC near the reinforcing bars is modeled by a tension stiffening model that considers the SFRC fracture properties, the steel fiber interaction in cracked concrete, and the bond behavior of steel bars. The model validation is carried out comparing the computed key overall and local responses and responses measured in the tests. Extensive comparisons between numerical and experimental results reveal that a reliable and computationally-efficient model captures well the key aspects of the response, such as the SFRC tension softening, the tension stiffening effect, the bending moment-curvature envelope, and the favorable contribution of the steel fibers on the residual response. The results of this study reveal the favorable influence of steel fibers on the flexural behavior, the cracking performance, and the post-cracking residual stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA