Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 168(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35394419

RESUMO

Mycolic acids are key components of the complex cell envelope of Corynebacteriales. These fatty acids, conjugated to trehalose or to arabinogalactan form the backbone of the mycomembrane. While mycolic acids are essential to the survival of some species, such as Mycobacterium tuberculosis, their absence is not lethal for Corynebacterium glutamicum, which has been extensively used as a model to depict their biosynthesis. Mycolic acids are first synthesized on the cytoplasmic side of the inner membrane and transferred onto trehalose to give trehalose monomycolate (TMM). TMM is subsequently transported to the periplasm by dedicated transporters and used by mycoloyltransferase enzymes to synthesize all the other mycolate-containing compounds. Using a random transposition mutagenesis, we recently identified a new uncharacterized protein (Cg1246) involved in mycolic acid metabolism. Cg1246 belongs to the DUF402 protein family that contains some previously characterized nucleoside phosphatases. In this study, we performed a functional and structural characterization of Cg1246. We showed that absence of the protein led to a significant reduction in the pool of TMM in C. glutamicum, resulting in a decrease in all other mycolate-containing compounds. We found that, in vitro, Cg1246 has phosphatase activity on organic pyrophosphate substrates but is most likely not a nucleoside phosphatase. Using a computational approach, we identified important residues for phosphatase activity and constructed the corresponding variants in C. glutamicum. Surprisingly complementation with these non-functional proteins fully restored the defect in TMM of the Δcg1246 mutant strain, suggesting that in vivo, the phosphatase activity is not involved in mycolic acid biosynthesis.


Assuntos
Corynebacterium glutamicum , Ácidos Micólicos , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Corynebacterium glutamicum/metabolismo , Ácidos Micólicos/metabolismo , Nucleosídeos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Trealose/metabolismo
2.
BMC Mol Biol ; 9: 25, 2008 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18294364

RESUMO

BACKGROUND: The ubiquitous Rad50 and Mre11 proteins play a key role in many processes involved in the maintenance of genome integrity in Bacteria and Eucarya, but their function in the Archaea is presently unknown. We showed previously that in most hyperthermophilic archaea, rad50-mre11 genes are linked to nurA encoding both a single-strand endonuclease and a 5' to 3' exonuclease, and herA, encoding a bipolar DNA helicase which suggests the involvement of the four proteins in common molecular pathway(s). Since genetic tools for hyperthermophilic archaea are just emerging, we utilized immuno-detection approaches to get the first in vivo data on the role(s) of these proteins in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius. RESULTS: We first showed that S. acidocaldarius can repair DNA damage induced by high doses of gamma rays, and we performed a time course analysis of the total levels and sub-cellular partitioning of Rad50, Mre11, HerA and NurA along with the RadA recombinase in both control and irradiated cells. We found that during the exponential phase, all proteins are synthesized and display constant levels, but that all of them exhibit a different sub-cellular partitioning. Following gamma irradiation, both Mre11 and RadA are immediately recruited to DNA and remain DNA-bound in the course of DNA repair. Furthermore, we show by immuno-precipitation assays that Rad50, Mre11 and the HerA helicase interact altogether. CONCLUSION: Our analyses strongly support that in Sulfolobus acidocaldarius, the Mre11 protein and the RadA recombinase might play an active role in the repair of DNA damage introduced by gamma rays and/or may act as DNA damage sensors. Moreover, our results demonstrate the functional interaction between Mre11, Rad50 and the HerA helicase and suggest that each protein play different roles when acting on its own or in association with its partners. This report provides the first in vivo evidence supporting the implication of the Mre11 protein in DNA repair processes in the Archaea and showing its interaction with both Rad50 and the HerA bipolar helicase. Further studies on the functional interactions between these proteins, the NurA nuclease and the RadA recombinase, will allow us to define their roles and mechanism of action.


Assuntos
Proteínas Arqueais/metabolismo , DNA Helicases/metabolismo , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Raios gama , Sulfolobus acidocaldarius/enzimologia , Sulfolobus acidocaldarius/efeitos da radiação , Anticorpos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cromossomos/metabolismo , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Imunoprecipitação , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/efeitos da radiação , Recombinases/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/efeitos da radiação , Sulfolobus acidocaldarius/citologia , Sulfolobus acidocaldarius/efeitos dos fármacos , Fatores de Tempo
3.
EMBO Rep ; 3(6): 537-42, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12052775

RESUMO

We isolated and characterized a new nuclease (NurA) exhibiting both single-stranded endonuclease activity and 5'-3' exonuclease activity on single-stranded and double-stranded DNA from the hyperthermophilic archaeon Sulfolobus acidocaldarius. Nuclease homologs are detected in all thermophilic archaea and, in most species, the nurA gene is organized in an operon-like structure with rad50 and mre11 archaeal homologs. This nuclease might thus act in concert with Rad50 and Mre11 proteins in archaeal recombination/repair. To our knowledge, this is the first report of a 5'-3' nuclease potentially associated with Rad50 and Mre11-like proteins that may lead to the processing of double-stranded breaks in 3' single-stranded tails.


Assuntos
Exodesoxirribonucleases/genética , Sulfolobus acidocaldarius/enzimologia , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Endodesoxirribonucleases/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Sulfolobus acidocaldarius/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA