Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Therm Biol ; 115: 103616, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37437371

RESUMO

Temperature is an important environmental factor that affects how organisms allocate metabolic resources to physiological processes. Laboratory experiments that determine absolute thermal limits for representative species are important for understanding how fishes are affected by climate change. Critical Thermal Methodology (CTM) and Chronic Lethal Methodology (CLM) experiments were utilized to construct a complete thermal tolerance polygon for the South American fish species, Mottled catfish (Corydoras paleatus). Mottled catfish showed Chronic Lethal Maxima (CLMax) of 34.9 ± 0.52 °C and Chronic Lethal Minima (CLMin) of 3.8 ± 0.08 °C. Fish were chronically acclimated (∼2 weeks) to 6 temperatures ranging from 7.2 ± 0.05 °C →32.2 ± 0.16 °C (7 °C, 12 °C, 17 °C, 22 °C, 27 °C, and 32 °C), and CTM used to estimate upper and lower acute temperature tolerance. Linear regressions of Critical Thermal Maxima (CTMax) and Minima (CTMin) data with each acclimation temperature were used along with CLMax and CLMin to create a complete thermal tolerance polygon. The highest CTMax was 38.4 ± 0.60 °C for fish acclimated to 32.2 ± 0.16 °C, and the lowest CTMin was 3.36 ± 1.84 °C for fish acclimated to 7.2 ± 0.05 °C. Mottled catfish have a polygon measuring 785.7°C2, and the slope of the linear regressions showed the species gained 0.55 °C and 0.32 °C of upper and lower tolerance per degree of acclimation temperature, respectively. We compared slopes of CTMax or CTMin regression lines to each other using a set of comparisons between 3, 4, 5, or 6 acclimation temperatures. Our data demonstrated that 3 acclimation temperatures were as sufficient as 4 â†’ 6 to pair with estimates of chronic upper and lower thermal limits for accurately determining a complete thermal tolerance polygon. Construction of this species' complete thermal tolerance polygon provides a template for other researchers. The following is sufficient to generate a complete thermal tolerance polygon: Three chronic acclimation temperatures that are spread somewhat evenly across a species' thermal range, include an estimation of CLMax and CLMin, and are followed by CTMax and CTMin measurements.


Assuntos
Peixes-Gato , Animais , Temperatura , Aclimatação/fisiologia , Consumo de Oxigênio , Mudança Climática
2.
J Infect Dis ; 227(8): 981-992, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36468309

RESUMO

BACKGROUND: Control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission requires understanding SARS-CoV-2 replication dynamics. METHODS: We developed a multiplexed droplet digital polymerase chain reaction (ddPCR) assay to quantify SARS-CoV-2 subgenomic RNAs (sgRNAs), which are only produced during active viral replication, and discriminate them from genomic RNAs (gRNAs). We applied the assay to specimens from 144 people with single nasopharyngeal samples and 27 people with >1 sample. Results were compared to quantitative PCR (qPCR) and viral culture. RESULTS: sgRNAs were quantifiable across a range of qPCR cycle threshold (Ct) values and correlated with Ct values. The ratio sgRNA:gRNA was stable across a wide range of Ct values, whereas adjusted amounts of N sgRNA to a human housekeeping gene declined with higher Ct values. Adjusted sgRNA and gRNA amounts were quantifiable in culture-negative samples, although levels were significantly lower than in culture-positive samples. Daily testing of 6 persons revealed that sgRNA is concordant with culture results during the first week of infection but may be discordant with culture later in infection. sgRNA:gRNA is constant during infection despite changes in viral culture. CONCLUSIONS: Ct values from qPCR correlate with active viral replication. More work is needed to understand why some cultures are negative despite presence of sgRNA.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Teste para COVID-19 , Genômica , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real/métodos , RNA Viral/genética , RNA Viral/análise , SARS-CoV-2/genética , RNA Subgenômico/genética
3.
Open Forum Infect Dis ; 9(7): ofac192, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35791353

RESUMO

Background: The global effort to vaccinate people against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during an ongoing pandemic has raised questions about how vaccine breakthrough infections compare with infections in immunologically naive individuals and the potential for vaccinated individuals to transmit the virus. Methods: We examined viral dynamics and infectious virus shedding through daily longitudinal sampling in 23 adults infected with SARS-CoV-2 at varying stages of vaccination, including 6 fully vaccinated individuals. Results: The durations of both infectious virus shedding and symptoms were significantly reduced in vaccinated individuals compared with unvaccinated individuals. We also observed that breakthrough infections are associated with strong tissue compartmentalization and are only detectable in saliva in some cases. Conclusions: Vaccination shortens the duration of time of high transmission potential, minimizes symptom duration, and may restrict tissue dissemination.

4.
Nat Microbiol ; 7(5): 640-652, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35484231

RESUMO

The dynamics of SARS-CoV-2 replication and shedding in humans remain poorly understood. We captured the dynamics of infectious virus and viral RNA shedding during acute infection through daily longitudinal sampling of 60 individuals for up to 14 days. By fitting mechanistic models, we directly estimated viral expansion and clearance rates and overall infectiousness for each individual. Significant person-to-person variation in infectious virus shedding suggests that individual-level heterogeneity in viral dynamics contributes to 'superspreading'. Viral genome loads often peaked days earlier in saliva than in nasal swabs, indicating strong tissue compartmentalization and suggesting that saliva may serve as a superior sampling site for early detection of infection. Viral loads and clearance kinetics of Alpha (B.1.1.7) and previously circulating non-variant-of-concern viruses were mostly indistinguishable, indicating that the enhanced transmissibility of this variant cannot be explained simply by higher viral loads or delayed clearance. These results provide a high-resolution portrait of SARS-CoV-2 infection dynamics and implicate individual-level heterogeneity in infectiousness in superspreading.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Carga Viral , Eliminação de Partículas Virais
5.
Commun Biol ; 5(1): 290, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361863

RESUMO

Nucleic acid detection is essential for numerous biomedical applications, but often requires complex protocols and/or suffers false-positive readouts. Here, we describe SENTINEL, an approach that combines isothermal amplification with a sequence-specific degradation method to detect nucleic acids with high sensitivity and sequence-specificity. Target single-stranded RNA or double-stranded DNA molecules are amplified by loop-mediated isothermal amplification (LAMP) and subsequently degraded by the combined action of lambda exonuclease and a sequence-specific DNA endonuclease (e.g., Cas9). By combining the sensitivity of LAMP with the precision of DNA endonucleases, the protocol achieves attomolar limits of detection while differentiating between sequences that differ by only one or two base pairs. The protocol requires less than an hour to complete using a 65 °C heat block and fluorometer, and detects SARS-CoV-2 virus particles in human saliva and nasopharyngeal swabs with high sensitivity.


Assuntos
COVID-19 , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos , COVID-19/diagnóstico , DNA , Endonucleases , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Ácidos Nucleicos/isolamento & purificação , SARS-CoV-2/genética
6.
medRxiv ; 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34494028

RESUMO

The global effort to vaccinate people against SARS-CoV-2 in the midst of an ongoing pandemic has raised questions about the nature of vaccine breakthrough infections and the potential for vaccinated individuals to transmit the virus. These questions have become even more urgent as new variants of concern with enhanced transmissibility, such as Delta, continue to emerge. To shed light on how vaccine breakthrough infections compare with infections in immunologically naive individuals, we examined viral dynamics and infectious virus shedding through daily longitudinal sampling in a small cohort of adults infected with SARS-CoV-2 at varying stages of vaccination. The durations of both infectious virus shedding and symptoms were significantly reduced in vaccinated individuals compared with unvaccinated individuals. We also observed that breakthrough infections are associated with strong tissue compartmentalization and are only detectable in saliva in some cases. These data indicate that vaccination shortens the duration of time of high transmission potential, minimizes symptom duration, and may restrict tissue dissemination.

7.
medRxiv ; 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34282424

RESUMO

The dynamics of SARS-CoV-2 replication and shedding in humans remain poorly understood. We captured the dynamics of infectious virus and viral RNA shedding during acute infection through daily longitudinal sampling of 60 individuals for up to 14 days. By fitting mechanistic models, we directly estimate viral reproduction and clearance rates, and overall infectiousness for each individual. Significant person-to-person variation in infectious virus shedding suggests that individual-level heterogeneity in viral dynamics contributes to superspreading. Viral genome load often peaked days earlier in saliva than in nasal swabs, indicating strong compartmentalization and suggesting that saliva may serve as a superior sampling site for early detection of infection. Viral loads and clearance kinetics of B.1.1.7 and non-B.1.1.7 viruses in nasal swabs were indistinguishable, however B.1.1.7 exhibited a significantly slower pre-peak growth rate in saliva. These results provide a high-resolution portrait of SARS-CoV-2 infection dynamics and implicate individual-level heterogeneity in infectiousness in superspreading.

8.
J Infect Dis ; 224(6): 976-982, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34191025

RESUMO

BACKGROUND: Serial screening is critical for restricting spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by facilitating timely identification of infected individuals to interrupt transmission. Variation in sensitivity of different diagnostic tests at different stages of infection has not been well documented. METHODS: In a longitudinal study of 43 adults newly infected with SARS-CoV-2, all provided daily saliva and nasal swabs for quantitative reverse transcription polymerase chain reaction (RT-qPCR), Quidel SARS Sofia antigen fluorescent immunoassay (FIA), and live virus culture. RESULTS: Both RT-qPCR and Quidel SARS Sofia antigen FIA peaked in sensitivity during the period in which live virus was detected in nasal swabs, but sensitivity of RT-qPCR tests rose more rapidly prior to this period. We also found that serial testing multiple times per week increases the sensitivity of antigen tests. CONCLUSIONS: RT-qPCR tests are more effective than antigen tests at identifying infected individuals prior to or early during the infectious period and thus for minimizing forward transmission (given timely results reporting). All tests showed >98% sensitivity for identifying infected individuals if used at least every 3 days. Daily screening using antigen tests can achieve approximately 90% sensitivity for identifying infected individuals while they are viral culture positive.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , Testes Diagnósticos de Rotina , SARS-CoV-2/isolamento & purificação , Adulto , Idoso , Animais , Antígenos Virais/análise , Chlorocebus aethiops , Feminino , Humanos , Estudos Longitudinais , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Saliva , Sensibilidade e Especificidade , Células Vero , Adulto Jovem
9.
medRxiv ; 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33791719

RESUMO

WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?: Diagnostic tests and sample types for SARS-CoV-2 vary in sensitivity across the infection period. WHAT IS ADDED BY THIS REPORT?: We show that both RTqPCR (from nasal swab and saliva) and the Quidel SARS Sofia FIA rapid antigen tests peak in sensitivity during the period in which live virus can be detected in nasal swabs, but that the sensitivity of RTqPCR tests rises more rapidly in the pre-infectious period. We also use empirical data to estimate the sensitivities of RTqPCR and antigen tests as a function of testing frequency. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: RTqPCR tests will be more effective than rapid antigen tests at identifying infected individuals prior to or early during the infectious period and thus for minimizing forward transmission (provided results reporting is timely). All modalities, including rapid antigen tests, showed >94% sensitivity to detect infection if used at least twice per week. Regular surveillance/screening using rapid antigen tests 2-3 times per week can be an effective strategy to achieve high sensitivity (>95%) for identifying infected individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA