Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(24): 247401, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37390429

RESUMO

Contagion processes on networks, including disease spreading, information diffusion, or social behaviors propagation, can be modeled as simple contagion, i.e., as a contagion process involving one connection at a time, or as complex contagion, in which multiple interactions are needed for a contagion event. Empirical data on spreading processes, however, even when available, do not easily allow us to uncover which of these underlying contagion mechanisms is at work. We propose a strategy to discriminate between these mechanisms upon the observation of a single instance of a spreading process. The strategy is based on the observation of the order in which network nodes are infected, and on its correlations with their local topology: these correlations differ between processes of simple contagion, processes involving threshold mechanisms, and processes driven by group interactions (i.e., by "higher-order" mechanisms). Our results improve our understanding of contagion processes and provide a method using only limited information to distinguish between several possible contagion mechanisms.


Assuntos
Reprodução , Comportamento Social , Difusão
2.
J R Soc Interface ; 19(191): 20220164, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730172

RESUMO

Computational models offer a unique setting to test strategies to mitigate the spread of infectious diseases, providing useful insights to applied public health. To be actionable, models need to be informed by data, which can be available at different levels of detail. While high-resolution data describing contacts between individuals are increasingly available, data gathering remains challenging, especially during a health emergency. Many models thus use synthetic data or coarse information to evaluate intervention protocols. Here, we evaluate how the representation of contact data might affect the impact of various strategies in models, in the realm of COVID-19 transmission in educational and work contexts. Starting from high-resolution contact data, we use detailed to coarse data representations to inform a model of SARS-CoV-2 transmission and simulate different mitigation strategies. We find that coarse data representations estimate a lower risk of superspreading events. However, the rankings of protocols according to their efficiency or cost remain coherent across representations, ensuring the consistency of model findings to inform public health advice. Caution should be taken, however, on the quantitative estimations of those benefits and costs triggering the adoption of protocols, as these may depend on data representation.


Assuntos
COVID-19 , Doenças Transmissíveis , COVID-19/epidemiologia , Doenças Transmissíveis/epidemiologia , Humanos , Modelos Teóricos , SARS-CoV-2
3.
Lancet Infect Dis ; 22(7): 977-989, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35378075

RESUMO

BACKGROUND: Schools were closed extensively in 2020-21 to counter SARS-CoV-2 spread, impacting students' education and wellbeing. With highly contagious variants expanding in Europe, safe options to maintain schools open are urgently needed. By estimating school-specific transmissibility, our study evaluates costs and benefits of different protocols for SARS-CoV-2 control at school. METHODS: We developed an agent-based model of SARS-CoV-2 transmission in schools. We used empirical contact data in a primary and a secondary school and data from pilot screenings in 683 schools during the alpha variant (B.1.1.7) wave in March-June, 2021, in France. We fitted the model to observed school prevalence to estimate the school-specific effective reproductive number for the alpha (Ralpha) and delta (B.1.617.2; Rdelta) variants and performed a cost-benefit analysis examining different intervention protocols. FINDINGS: We estimated Ralpha to be 1·40 (95% CI 1·35-1·45) in the primary school and 1·46 (1·41-1·51) in the secondary school during the spring wave, higher than the time-varying reproductive number estimated from community surveillance. Considering the delta variant and vaccination coverage in Europe as of mid-September, 2021, we estimated Rdelta to be 1·66 (1·60-1·71) in primary schools and 1·10 (1·06-1·14) in secondary schools. Under these conditions, weekly testing of 75% of unvaccinated students (PCR tests on saliva samples in primary schools and lateral flow tests in secondary schools), in addition to symptom-based testing, would reduce cases by 34% (95% CI 32-36) in primary schools and 36% (35-39) in secondary schools compared with symptom-based testing alone. Insufficient adherence was recorded in pilot screening (median ≤53%). Regular testing would also reduce student-days lost up to 80% compared with reactive class closures. Moderate vaccination coverage in students would still benefit from regular testing for additional control-ie, weekly testing 75% of unvaccinated students would reduce cases compared with symptom-based testing only, by 23% in primary schools when 50% of children are vaccinated. INTERPRETATION: The COVID-19 pandemic will probably continue to pose a risk to the safe and normal functioning of schools. Extending vaccination coverage in students, complemented by regular testing with good adherence, are essential steps to keep schools open when highly transmissible variants are circulating. FUNDING: EU Framework Programme for Research and Innovation Horizon 2020, Horizon Europe Framework Programme, Agence Nationale de la Recherche, ANRS-Maladies Infectieuses Émergentes.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Criança , Humanos , Pandemias/prevenção & controle , SARS-CoV-2/genética , Instituições Acadêmicas , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA