RESUMO
Drug-resistant Mycobacterium tuberculosis is a significant cause of infectious disease morbidity and mortality for which new antimicrobials are urgently needed. Inhibitors of mycobacterial respiratory energy metabolism have emerged as promising next-generation antimicrobials, but a number of targets remain unexplored. Succinate dehydrogenase (SDH), a focal point in mycobacterial central carbon metabolism and respiratory energy production, is required for growth and survival in M. tuberculosis under a number of conditions, highlighting the potential of inhibitors targeting mycobacterial SDH enzymes. To advance SDH as a novel drug target in M. tuberculosis, we utilized a combination of biochemical screening and in-silico deep learning technologies to identify multiple chemical scaffolds capable of inhibiting mycobacterial SDH activity. Antimicrobial susceptibility assays show that lead inhibitors are bacteriostatic agents with activity against wild-type and drug-resistant strains of M. tuberculosis. Mode of action studies on lead compounds demonstrate that the specific inhibition of SDH activity dysregulates mycobacterial metabolism and respiration and results in the secretion of intracellular succinate. Interaction assays demonstrate that the chemical inhibition of SDH activity potentiates the activity of other bioenergetic inhibitors and prevents the emergence of resistance to a variety of drugs. Overall, this study shows that SDH inhibitors are promising next-generation antimicrobials against M. tuberculosis.
Assuntos
Antituberculosos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Succinato Desidrogenase , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Antituberculosos/farmacologia , Antituberculosos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Humanos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismoRESUMO
Tuberculosis remains a leading cause of death by infectious disease. The long treatment regimen and the spread of drug-resistant strains of the causative agent Mycobacterium tuberculosis (Mtb) necessitates the development of new treatment options. In a phenotypic screen, nitrofuran-resorufin conjugate 1 was identified as a potent sub-micromolar inhibitor of whole cell Mtb. Complete loss of activity was observed for this compound in Mtb mutants affected in enzyme cofactor F420 biosynthesis (fbiC), suggesting that 1 undergoes prodrug activation in a manner similar to anti-tuberculosis prodrug pretomanid. Exploration of the structure-activity relationship led to the discovery of novel resorufin analogues that do not rely on the deazaflavin-dependent nitroreductase (Ddn) bioactivation pathway for their antimycobacterial activity. These analogues are of interest as they work through an alternative, currently unknown mechanism that may expand our chemical arsenal towards the treatment of this devastating disease.
RESUMO
Reconstructing the evolutionary origins of Mycobacterium tuberculosis, the causative agent of human tuberculosis, has helped identify bacterial factors that have led to the tubercle bacillus becoming such a formidable human pathogen. Here we report the discovery and detailed characterization of an exceedingly slow growing mycobacterium that is closely related to M. tuberculosis for which we have proposed the species name Mycobacterium spongiae sp. nov., (strain ID: FSD4b-SM). The bacterium was isolated from a marine sponge, taken from the waters of the Great Barrier Reef in Queensland, Australia. Comparative genomics revealed that, after the opportunistic human pathogen Mycobacterium decipiens, M. spongiae is the most closely related species to the M. tuberculosis complex reported to date, with 80% shared average nucleotide identity and extensive conservation of key M. tuberculosis virulence factors, including intact ESX secretion systems and associated effectors. Proteomic and lipidomic analyses showed that these conserved systems are functional in FSD4b-SM, but that it also produces cell wall lipids not previously reported in mycobacteria. We investigated the virulence potential of FSD4b-SM in mice and found that, while the bacteria persist in lungs for 56 days after intranasal infection, no overt pathology was detected. The similarities with M. tuberculosis, together with its lack of virulence, motivated us to investigate the potential of FSD4b-SM as a vaccine strain and as a genetic donor of the ESX-1 genetic locus to improve BCG immunogenicity. However, neither of these approaches resulted in superior protection against M. tuberculosis challenge compared to BCG vaccination alone. The discovery of M. spongiae adds to our understanding of the emergence of the M. tuberculosis complex and it will be another useful resource to refine our understanding of the factors that shaped the evolution and pathogenesis of M. tuberculosis.
Assuntos
Poríferos , Animais , Camundongos , Virulência , Poríferos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Fatores de Virulência/genética , Feminino , Evolução Biológica , Humanos , Filogenia , Mycobacterium/patogenicidade , Mycobacterium/genéticaRESUMO
Synergistic interactions between chemical inhibitors, whilst informative, can be difficult to interpret, as chemical inhibitors can often have multiple targets, many of which can be unknown. Here, using multiplexed transcriptional repression, we have validated that the simultaneous repression of glutamate racemase and alanine racemase has a synergistic interaction in Mycobacterium tuberculosis. This confirms prior observations from chemical interaction studies and highlights the potential of targeting multiple enzymes involved in mycobacterial cell wall synthesis.
Assuntos
Alanina Racemase , Isomerases de Aminoácido , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/metabolismo , Alanina Racemase/genética , Alanina Racemase/metabolismo , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Parede Celular/metabolismo , Parede Celular/genéticaAssuntos
Trifosfato de Adenosina , Antituberculosos , Desenho de Fármacos , Mycobacterium tuberculosis , Tuberculose , Humanos , Trifosfato de Adenosina/metabolismo , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , AnimaisRESUMO
Discovered in the 1920s, cytochrome bd is a terminal oxidase that has received renewed attention as a drug target since its atomic structure was first determined in 2016. Only found in prokaryotes, we study it here as a drug target for Mycobacterium tuberculosis (Mtb). Most previous drug discovery efforts toward cytochrome bd have involved analogues of the canonical substrate quinone, known as Aurachin D. Here, we report six new cytochrome bd inhibitor scaffolds determined from a computational screen and confirmed on target activity through in vitro testing. These scaffolds provide new avenues for lead optimization toward Mtb therapeutics.
Assuntos
Antituberculosos , Inibidores Enzimáticos , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Tuberculose/tratamento farmacológico , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Oxirredutases/química , Modelos Moleculares , Simulação de Acoplamento MolecularRESUMO
Background: A limited ability to eliminate drug-resistant strains of Mycobacterium tuberculosis is a major contributor to the morbidity of TB. Complicating this problem, little is known about how drug resistance-conferring mutations alter the ability of M. tuberculosis to tolerate antibiotic killing. Here, we investigated if drug-resistant strains of M. tuberculosis have an altered ability to tolerate killing by cell wall-targeting inhibitors. Methods: Bacterial killing and MIC assays were used to test for antibiotic tolerance and synergy against a panel of drug-resistant M. tuberculosis strains. Results: Our results demonstrate that vancomycin and thioacetazone exhibit increased killing of diverse drug-resistant strains. Mutations in mmaA4 and mmpL3 increased vancomycin killing, which was consistent with vancomycin synergizing with thioacetazone and MmpL3-targeting inhibitors. In contrast, mutations in the mce1 operon conferred tolerance to vancomycin. Conclusions: Overall, this work demonstrates how drug-resistant strains experience perturbations in cell-wall production that alters their tolerance to killing by cell wall-targeting inhibitors.
RESUMO
Lipopeptides are an important class of biomolecules for drug development. Compared with conventional acylation, a chemoselective lipidation strategy offers a more efficient strategy for late-stage structural derivatisation of a peptide scaffold. It provides access to chemically diverse compounds possessing intriguing and non-native moieties. Utilising an allenamide, we report the first semisynthesis of antimicrobial lipopeptides leveraging a highly efficient thia-Michael addition of chemically diverse lipophilic thiols. Using chemoenzymatically prepared polymyxin B nonapeptide (PMBN) as a model scaffold, an optimised allenamide-mediated thia-Michael addition effected rapid and near quantitative lipidation, affording vinyl sulfide-linked lipopeptide derivatives. Harnessing the utility of this new methodology, 22â lipophilic thiols of unprecedented chemical diversity were introduced to the PMBN framework. These included alkyl thiols, substituted aromatic thiols, heterocyclic thiols and those bearing additional functional groups (e.g., amines), ultimately yielding analogues with potent Gram-negative antimicrobial activity and substantially attenuated nephrotoxicity. Furthermore, we report facile routes to transform the allenamide into a ß-keto amide on unprotected peptides, offering a powerful "jack-of-all-trades" synthetic intermediate to enable further peptide modification.
Assuntos
Amidas , Lipopeptídeos , Amidas/química , Lipopeptídeos/síntese química , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Modelos Moleculares , Conformação Molecular , Compostos de Sulfidrila/química , Concentração de Íons de Hidrogênio , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacosRESUMO
Testing Plasmodium vivax antimicrobial sensitivity is limited to ex vivo schizont maturation assays, which preclude determining the IC50s of delayed action antimalarials such as doxycycline. Using Plasmodium cynomolgi as a model for P. vivax, we determined the physiologically significant delayed death effect induced by doxycycline [IC50(96 h), 1,401 ± 607 nM]. As expected, IC50(96 h) to chloroquine (20.4 nM), piperaquine (12.6 µM), and tafenoquine (1,424 nM) were not affected by extended exposure.
Assuntos
Aminoquinolinas , Antimaláricos , Doxiciclina , Piperazinas , Plasmodium cynomolgi , Plasmodium vivax , Doxiciclina/farmacologia , Antimaláricos/farmacologia , Aminoquinolinas/farmacologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium cynomolgi/efeitos dos fármacos , Cloroquina/farmacologia , Animais , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Quinolinas/farmacologia , Concentração Inibidora 50 , Humanos , Testes de Sensibilidade ParasitáriaRESUMO
The brevicidines represent a novel class of nonribosomal antimicrobial peptides that possess remarkable potency and selectivity toward highly problematic and resistant Gram-negative pathogenic bacteria. A recently discovered member of the brevicidine family, coined brevicidine B (2), comprises a single amino acid substitution (from d-Tyr2 to d-Phe2) in the amino acid sequence of the linear moiety of brevicidine (1) and was reported to exhibit broader antimicrobial activity against both Gram-negative (MIC = 2-4 µgmL-1) and Gram-positive (MIC = 2-8 µgmL-1) pathogens. Encouraged by this, we herein report the first total synthesis of the proposed structure of brevicidine B (2), building on our previously reported synthetic strategy to access brevicidine (1). In agreement with the original isolation paper, pleasingly, synthetic 2 demonstrated antimicrobial activity toward Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae (MIC = 4-8 µgmL-1). Interestingly, however, synthetic 2 was inactive toward all of the tested Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus strains. Substitution of d-Phe2 with its enantiomer, and other hydrophobic residues, yields analogues that were either inactive or only exhibited activity toward Gram-negative strains. The striking difference in the biological activity of our synthetic 2 compared to the reported natural compound warrants the re-evaluation of the original natural product for purity or possible differences in relative configuration. Finally, the evaluation of synthetic 1 and 2 in a human kidney organoid model of nephrotoxicity revealed substantial toxicity of both compounds, although 1 was less toxic than 2 and polymyxin B. These results indicate that modification to position 2 may afford a strategy to mitigate the nephrotoxicity of brevicidine.
Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Humanos , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Depsipeptídeos/síntese química , Klebsiella pneumoniae/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/químicaRESUMO
Covalent probes coupled with chemical proteomics represent a powerful method for investigating small molecule and protein interactions. However, the creation of a reactive warhead within various ligands to form covalent probes has been a major obstacle. Herein, we report a convenient and robust process to assemble a unique electrophile, an α-acyloxyenamide, through a one-step late-stage coupling reaction. This procedure demonstrates remarkable tolerance towards other functional groups and facilitates ligand-directed labeling in proteins of interest. The reactive group has been successfully incorporated into a clinical drug targeting the EGFR L858R mutant, erlotinib, and a pan-kinase inhibitor. The resulting probes have been shown to be able to covalently engage a lysine residue proximal to the ATP-binding pocket of the EGFR L858R mutant. A series of active sites, and Mg2+, ATP-binding sites of kinases, such as K33 of CDK1, CDK2, CDK5 were detected. This is the first report of engaging these conserved catalytic lysine residues in kinases with covalent inhibition. Further application of this methodology to natural products has demonstrated its success in profiling ligandable conserved lysine residues in whole proteome. These findings offer insights for the development of new targeted covalent inhibitors (TCIs).
RESUMO
Mycobacterial bioenergetics is a validated target space for antitubercular drug development. Here, we identify BB2-50F, a 6-substituted 5-(N,N-hexamethylene)amiloride derivative as a potent, multi-targeting bioenergetic inhibitor of Mycobacterium tuberculosis. We show that BB2-50F rapidly sterilizes both replicating and non-replicating cultures of M. tuberculosis and synergizes with several tuberculosis drugs. Target identification experiments, supported by docking studies, showed that BB2-50F targets the membrane-embedded c-ring of the F1Fo-ATP synthase and the catalytic subunit (substrate-binding site) of succinate dehydrogenase. Biochemical assays and metabolomic profiling showed that BB2-50F inhibits succinate oxidation, decreases the activity of the tricarboxylic acid (TCA) cycle, and results in succinate secretion from M. tuberculosis. Moreover, we show that the lethality of BB2-50F under aerobic conditions involves the accumulation of reactive oxygen species. Overall, this study identifies BB2-50F as an effective inhibitor of M. tuberculosis and highlights that targeting multiple components of the mycobacterial respiratory chain can produce fast-acting antimicrobials.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/farmacologia , Antituberculosos/química , Tuberculose/tratamento farmacológico , Trifosfato de Adenosina , Inibidores Enzimáticos/farmacologia , SuccinatosRESUMO
Antimicrobial tolerance is the ability of a microbial population to survive, but not proliferate, during antimicrobial exposure. Significantly, it has been shown to precede the development of bona fide antimicrobial resistance. We have previously identified the two-component system CroRS as a critical regulator of tolerance to antimicrobials like teixobactin in the bacterial pathogen Enterococcus faecalis. To understand the molecular mechanism of this tolerance, we have carried out RNA-seq analyses in the E. faecalis wild-type and isogenic ∆ croRS mutant to determine the teixobactin-induced CroRS regulon. We identified a 132 gene CroRS regulon and demonstrate that CroRS upregulates biosynthesis of all major components of the enterococcal cell envelope in response to teixobactin. This suggests a coordinating role of this regulatory system in maintaining integrity of the multiple layers of the enterococcal envelope during antimicrobial stress, likely contributing to bacterial survival. Using experimental evolution, we observed that truncation of HppS, a key enzyme in the synthesis of the quinone electron carrier demethylmenaquinone, was sufficient to rescue tolerance in the croRS deletion strain. This highlights a key role for isoprenoid biosynthesis in antimicrobial tolerance in E. faecalis. Here, we propose a model of CroRS acting as a master regulator of cell envelope biogenesis and a gate-keeper between isoprenoid biosynthesis and respiration to ensure tolerance against antimicrobial challenge.
Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Enterococcus faecalis/genética , Proteínas de Bactérias/genética , Homeostase , Terpenos , Testes de Sensibilidade MicrobianaRESUMO
The bioenergetic mechanisms by which Mycobacterium tuberculosis survives hypoxia are poorly understood. Current models assume that the bacterium shifts to an alternate electron acceptor or fermentation to maintain membrane potential and ATP synthesis. Counterintuitively, we find here that oxygen itself is the principal terminal electron acceptor during hypoxic dormancy. M. tuberculosis can metabolize oxygen efficiently at least two orders of magnitude below the concentration predicted to occur in hypoxic lung granulomas. Despite a difference in apparent affinity for oxygen, both the cytochrome bcc:aa3 and cytochrome bd oxidase respiratory branches are required for hypoxic respiration. Simultaneous inhibition of both oxidases blocks oxygen consumption, reduces ATP levels, and kills M. tuberculosis under hypoxia. The capacity of mycobacteria to scavenge trace levels of oxygen, coupled with the absence of complex regulatory mechanisms to achieve hierarchal control of the terminal oxidases, may be a key determinant of long-term M. tuberculosis survival in hypoxic lung granulomas.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Oxigênio/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxirredutases/metabolismo , Homeostase , Tuberculose/microbiologia , Hipóxia , Trifosfato de Adenosina/metabolismo , Citocromos/metabolismoRESUMO
Diverse aerobic bacteria use atmospheric H2 as an energy source for growth and survival1. This globally significant process regulates the composition of the atmosphere, enhances soil biodiversity and drives primary production in extreme environments2,3. Atmospheric H2 oxidation is attributed to uncharacterized members of the [NiFe] hydrogenase superfamily4,5. However, it remains unresolved how these enzymes overcome the extraordinary catalytic challenge of oxidizing picomolar levels of H2 amid ambient levels of the catalytic poison O2 and how the derived electrons are transferred to the respiratory chain1. Here we determined the cryo-electron microscopy structure of the Mycobacterium smegmatis hydrogenase Huc and investigated its mechanism. Huc is a highly efficient oxygen-insensitive enzyme that couples oxidation of atmospheric H2 to the hydrogenation of the respiratory electron carrier menaquinone. Huc uses narrow hydrophobic gas channels to selectively bind atmospheric H2 at the expense of O2, and 3 [3Fe-4S] clusters modulate the properties of the enzyme so that atmospheric H2 oxidation is energetically feasible. The Huc catalytic subunits form an octameric 833 kDa complex around a membrane-associated stalk, which transports and reduces menaquinone 94 Å from the membrane. These findings provide a mechanistic basis for the biogeochemically and ecologically important process of atmospheric H2 oxidation, uncover a mode of energy coupling dependent on long-range quinone transport, and pave the way for the development of catalysts that oxidize H2 in ambient air.
Assuntos
Atmosfera , Hidrogênio , Hidrogenase , Mycobacterium smegmatis , Microscopia Crioeletrônica , Hidrogênio/química , Hidrogênio/metabolismo , Hidrogenase/química , Hidrogenase/metabolismo , Hidrogenase/ultraestrutura , Oxirredução , Oxigênio , Vitamina K 2/metabolismo , Atmosfera/química , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo , HidrogenaçãoRESUMO
The increasing incidence of drug resistance in Mycobacterium tuberculosis has diminished the efficacy of almost all available antibiotics, complicating efforts to combat the spread of this global health burden. Alongside the development of new drugs, optimised drug combinations are needed to improve treatment success and prevent the further spread of antibiotic resistance. Typically, antibiotic resistance leads to reduced sensitivity, yet in some cases the evolution of drug resistance can lead to enhanced sensitivity to unrelated drugs. This phenomenon of collateral sensitivity is largely unexplored in M. tuberculosis but has the potential to identify alternative therapeutic strategies to combat drug-resistant strains that are unresponsive to current treatments. Here, by using drug susceptibility profiling, genomics and evolutionary studies we provide evidence for the existence of collateral drug sensitivities in an isogenic collection M. tuberculosis drug-resistant strains. Furthermore, in proof-of-concept studies, we demonstrate how collateral drug phenotypes can be exploited to select against and prevent the emergence of drug-resistant strains. This study highlights that the evolution of drug resistance in M. tuberculosis leads to collateral drug responses that can be exploited to design improved drug regimens.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Tuberculose/microbiologia , Fenótipo , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológicoRESUMO
The cytochrome bcc-aa3 oxidase (Cyt-bcc) of Mycobacterium tuberculosis (Mtb) is a promising anti-tuberculosis target. However, when Cyt-bcc is inhibited, cytochrome bd terminal oxidase (Cyt-bd) can still maintain the activity of the respiratory chain and drive ATP synthesis. Through virtual screening and biological validation, we discovered two FDA-approved drugs, ivacaftor and roquinimex, exhibited moderate binding affinity to Cyt-bd. Structural modifications of them led to 1-hydroxy-2-methylquinolin-4(1H)-one derivatives as potent new Cyt-bd inhibitors. Compound 8d binds to Cyt-bd with a Kd value of 4.17 µM and inhibits the growth of the Cyt-bcc knock-out strain (ΔqcrCAB, Cyt-bd+) with a MIC value of 6.25 µM. The combination of 8d with the Cyt-bcc inhibitor Q203 completely inhibited oxygen consumption of the wild-type strain and the inverted-membrane vesicles expressing M. tuberculosis Cyt-bd (ΔcydAB::MtbCydAB+). Our study provides a promising starting point for the development of novel dual chemotherapies for tuberculosis.
Assuntos
Antituberculosos , Grupo dos Citocromos b , Grupo dos Citocromos d , Mycobacterium tuberculosis , Oxirredutases , Humanos , Antituberculosos/química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Oxirredutases/antagonistas & inibidores , Tuberculose/tratamento farmacológico , Grupo dos Citocromos b/antagonistas & inibidores , Grupo dos Citocromos d/antagonistas & inibidoresRESUMO
Due to its central role in energy generation and bacterial viability, mycobacterial bioenergetics is an attractive therapeutic target for anti-tuberculosis drug discovery. Building upon our work on antimycobacterial dioxonaphthoimidazoliums that were activated by a proximal positive charge and generated reactive oxygen species upon reduction by Type II NADH dehydrogenase, we herein studied the effect of a distal positive charge on the antimycobacterial activity of naphthoquinoneimidazoles by incorporating a trialkylphosphonium cation. The potency-enhancing properties of the linker length were affirmed by structure-activity relationship studies. The most active compound against M. tb H37Rv displayed good selectivity index (SI = 34) and strong bactericidal activity in the low micromolar range, which occurred through rapid bacterial membrane depolarization that resulted in depletion of intracellular ATP. Through this work, we demonstrated a switch of the scaffold's mode-of-action via relocation of positive charge while retaining its excellent antibacterial activity and selectivity.
RESUMO
With the post-antibiotic era rapidly approaching, many have turned their attention to developing new treatments, often by structural modification of existing antibiotics. Polymyxins, a family of lipopeptide antibiotics that are used as a last line of defense in the clinic, have recently developed resistance and exhibit significant nephrotoxicity issues. Using thiol-ene chemistry, the facile preparation of six unique S-lipidated building blocks was demonstrated and used to generate lipopeptide mimetics upon incorporation into solid-phase peptide synthesis (SPPS). We then designed and synthesized 38 polymyxin analogues, incorporating these unique building blocks at the N-terminus, or to replace hydrophobic residues at positions 6 and 7 of the native lipopeptides. Several polymyxin analogues bearing one or more S-linked lipids were found to be equipotent to polymyxin, showed minimal kidney nephrotoxicity, and demonstrated activity against several World Health Organisation (WHO) priority pathogens. The S-lipidation strategy has demonstrated potential as a novel approach to prepare innovative new lipopeptide antibiotics.
Assuntos
Antibacterianos , Polimixina B , Antibacterianos/farmacologiaRESUMO
A revised total synthesis of aurachin D (1a), an isoprenoid quinolone alkaloid that targets Mycobacterium tuberculosis (Mtb) cytochrome bd (cyt-bd) oxidase, was accomplished using an oxazoline ring-opening reaction. The ring opening enabled access to a range of electron-poor analogues, while electron-rich analogues could be prepared using the Conrad-Limpach reaction. The aryl-substituted and side-chain-modified aurachin D analogues were screened for inhibition of Mtb cyt-bd oxidase and growth inhibition of Mtb. Nanomolar inhibition of Mtb cyt-bd oxidase was observed for the shorter-chain analogue 1d (citronellyl side chain) and the aryl-substituted analogues 1g/1k (fluoro substituent at C6/C7), 1t/1v (hydroxy substituent at C5/C6) and 1u/1w/1x (methoxy substituent at C5/C6/C7). Aurachin D and the analogues did not inhibit growth of nonpathogenic Mycobacterium smegmatis, but the citronellyl (1d) and 6-fluoro-substituted (1g) inhibitors from the Mtb cyt-bd oxidase assay displayed moderate growth inhibition against pathogenic Mtb (MIC = 4-8 µM).