RESUMO
BACKGROUND: SLC6A1-related disorder is a recently identified, rare, genetic neurodevelopmental disorder that is associated with loss-of-function variants in SLC6A1. This gene encodes GABA transporter type I that is responsible for re-uptake of GABA from the synapse into the pre-synaptic terminal or circulating neuroglia. Based upon retrospective review of published cases and available research databases including Epi25 collective and SLC6A1 Connect patient database, the phenotypic spectrum is broad and includes developmental delay, epilepsy, and autism or autistic traits. SLC6A1 is one of the genes included in the Simons Searchlight registry, which includes standardized data collection across genetically identified neurodevelopmental conditions. METHODS: In this study, we compare parent-report measures of phenotypic features in the Simons Searchlight registry to previously published, provider-reported cases to assess if parent-report measures are consistent with what has been reported in the literature. RESULTS: There were 116 participants in the provider-reported dataset compared to 43 individuals in the caregiver-reported dataset. Carriers in Searchlight had 83 unique pathogenic or likely pathogenic variants in SLC6A1, which were predominantly missense or nonsense variants. There was no significant difference between groups for the prevalence of developmental delay, ASD, or ADHD. Caregivers more often reported hypotonia, while epilepsy was slightly more frequently reported by providers. CONCLUSIONS: We propose that standardized parent-report data collection methods are consistent with provider reports on many core features of SLC6A1-related disorder. The availability of patient registries and standardized natural history studies may fill an important need in clinical trial readiness programs, with larger sample sizes than smaller published case series.
Assuntos
Transtorno Autístico , Epilepsia , Transtornos do Neurodesenvolvimento , Epilepsia/genética , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , PaisRESUMO
Advances in gene discovery have identified genetic variants in the solute carrier family 6 member 1 gene as a monogenic cause of neurodevelopmental disorders, including epilepsy with myoclonic atonic seizures, autism spectrum disorder and intellectual disability. The solute carrier family 6 member 1 gene encodes for the GABA transporter protein type 1, which is responsible for the reuptake of the neurotransmitter GABA, the primary inhibitory neurotransmitter in the central nervous system, from the extracellular space. GABAergic inhibition is essential to counterbalance neuronal excitation, and when significantly disrupted, it negatively impacts brain development leading to developmental differences and seizures. Aggregation of patient variants and observed clinical manifestations expand understanding of the genotypic and phenotypic spectrum of this disorder. Here, we assess genetic and phenotypic features in 116 individuals with solute carrier family 6 member 1 variants, the vast majority of which are likely to lead to GABA transporter protein type 1 loss-of-function. The knowledge acquired will guide therapeutic decisions and the development of targeted therapies that selectively enhance transporter function and may improve symptoms. We analysed the longitudinal and cell type-specific expression of solute carrier family 6 member 1 in humans and localization of patient and control missense variants in a novel GABA transporter protein type 1 protein structure model. In this update, we discuss the progress made in understanding and treating solute carrier family 6 member 1-related disorders thus far, through the concerted efforts of clinicians, scientists and family support groups.
RESUMO
The lateral ventricle subventricular zone (SVZ) is a frequent and consequential site of pediatric and adult glioma spread, but the cellular and molecular mechanisms mediating this are poorly understood. We demonstrate that neural precursor cell (NPC):glioma cell communication underpins this propensity of glioma to colonize the SVZ through secretion of chemoattractant signals toward which glioma cells home. Biochemical, proteomic, and functional analyses of SVZ NPC-secreted factors revealed the neurite outgrowth-promoting factor pleiotrophin, along with required binding partners SPARC/SPARCL1 and HSP90B, as key mediators of this chemoattractant effect. Pleiotrophin expression is strongly enriched in the SVZ, and pleiotrophin knock down starkly reduced glioma invasion of the SVZ in the murine brain. Pleiotrophin, in complex with the binding partners, activated glioma Rho/ROCK signaling, and ROCK inhibition decreased invasion toward SVZ NPC-secreted factors. These findings demonstrate a pathogenic role for NPC:glioma interactions and potential therapeutic targets to limit glioma invasion. PAPERCLIP.
Assuntos
Neoplasias Encefálicas/patologia , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Glioma/patologia , Ventrículos Laterais/patologia , Invasividade Neoplásica/patologia , Idoso , Animais , Neoplasias Encefálicas/metabolismo , Comunicação Celular , Criança , Sistemas de Liberação de Medicamentos , Feminino , Glioma/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Xenoenxertos , Humanos , Ventrículos Laterais/metabolismo , Masculino , Camundongos , Transplante de Neoplasias , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismoRESUMO
In the title compound, C24H40N4S3 (4+)·2SiF6 (2-)·3CH3OH, the central tertiary amine function is protonated and is connected to three thio-phen-2-yl-methyl-amino-n-propyl groups, forming the arms of a T-shaped cation that has two pockets. Each arm contains one protonated secondary amine function, and each pocket is occupied by one SiF6 (2-) anion bonded via two N-Hâ¯F inter-actions with the protonated amine group on the middle arm, while two methanol solvent mol-ecules are N-Hâ¯O hydrogen-bonded with the other secondary protonated amine groups on the side arms. Weak O-Hâ¯O and O-Hâ¯F hydrogen bonds between the solvent mol-ecules and between the solvent mol-ecules and the anions, respectively, are also observed. All three thio-phene groups in the arms are disordered over two sets of sites, with occupancy ratios of 0.828â (3):0.172â (3), 0.910â (2):0.090â (2) and 0.890â (3):0.110â (3).