Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Proteomes ; 12(2)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38651373

RESUMO

With growing recognition and acknowledgement of the genuine complexity of proteomes, we are finally entering the post-proteogenomic era. Routine assessment of proteomes as inferred correlates of gene sequences (i.e., canonical 'proteins') cannot provide the necessary critical analysis of systems-level biology that is needed to understand underlying molecular mechanisms and pathways or identify the most selective biomarkers and therapeutic targets. These critical requirements demand the analysis of proteomes at the level of proteoforms/protein species, the actual active molecular players. Currently, only highly refined integrated or integrative top-down proteomics (iTDP) enables the analytical depth necessary to provide routine, comprehensive, and quantitative proteome assessments across the widest range of proteoforms inherent to native systems. Here we provide a broad perspective of the field, taking in historical and current realities, to establish a more balanced understanding of where the field has come from (in particular during the ten years since Proteomes was launched), current issues, and how things likely need to proceed if necessary deep proteome analyses are to succeed. We base this in our firm belief that the best proteomic analyses reflect, as closely as possible, the native sample at the moment of sampling. We also seek to emphasise that this and future analytical approaches are likely best based on the broad recognition and exploitation of the complementarity of currently successful approaches. This also emphasises the need to continuously evaluate and further optimize established approaches, to avoid complacency in thinking and expectations but also to promote the critical and careful development and introduction of new approaches, most notably those that address proteoforms. Above all, we wish to emphasise that a rigorous focus on analytical quality must override current thinking that largely values analytical speed; the latter would certainly be nice, if only proteoforms could thus be effectively, routinely, and quantitatively assessed. Alas, proteomes are composed of proteoforms, not molecular species that can be amplified or that directly mirror genes (i.e., 'canonical'). The problem is hard, and we must accept and address it as such, but the payoff in playing this longer game of rigorous deep proteome analyses is the promise of far more selective biomarkers, drug targets, and truly personalised or even individualised medicine.

2.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240132

RESUMO

The hepatitis C virus (HCV) relies on cellular lipid pathways for virus replication and also induces liver steatosis, but the mechanisms involved are not clear. We performed a quantitative lipidomics analysis of virus-infected cells by combining high-performance thin-layer chromatography (HPTLC) and mass spectrometry, using an established HCV cell culture model and subcellular fractionation. Neutral lipid and phospholipids were increased in the HCV-infected cells; in the endoplasmic reticulum there was an ~four-fold increase in free cholesterol and an ~three-fold increase in phosphatidyl choline (p < 0.05). The increase in phosphatidyl choline was due to the induction of a non-canonical synthesis pathway involving phosphatidyl ethanolamine transferase (PEMT). An HCV infection induced expression of PEMT while knocking down PEMT with siRNA inhibited virus replication. As well as supporting virus replication, PEMT mediates steatosis. Consistently, HCV induced the expression of the pro-lipogenic genes SREBP 1c and DGAT1 while inhibiting the expression of MTP, promoting lipid accumulation. Knocking down PEMT reversed these changes and reduced the lipid content in virus-infected cells. Interestingly, PEMT expression was over 50% higher in liver biopsies from people infected with the HCV genotype 3 than 1, and three times higher than in people with chronic hepatitis B, suggesting that this may account for genotype-dependent differences in the prevalence of hepatic steatosis. PEMT is a key enzyme for promoting the accumulation of lipids in HCV-infected cells and supports virus replication. The induction of PEMT may account for virus genotype specific differences in hepatic steatosis.


Assuntos
Fígado Gorduroso , Hepatite C Crônica , Hepatite C , Humanos , Hepacivirus/genética , Hepacivirus/metabolismo , Transferases/metabolismo , Hepatite C/genética , Fígado Gorduroso/patologia , Replicação Viral , Genótipo , Colesterol/metabolismo , Fosfatidilcolinas/metabolismo , Fenótipo , Fosfatidiletanolamina N-Metiltransferase/genética
3.
Proteomes ; 11(1)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36976889

RESUMO

Integrative top-down proteomics is an analytical approach that fully addresses the breadth and complexity needed for effective and routine assessment of proteomes. Nonetheless, any such assessments also require a rigorous review of methodology to ensure the deepest possible quantitative proteome analyses. Here, we establish an optimized general protocol for proteome extracts to improve the reduction of proteoforms and, thus, resolution in 2DE. Dithiothreitol (DTT), tributylphosphine (TBP), and 2-hydroxyethyldisulfide (HED), combined and alone, were tested in one-dimensional SDS-PAGE (1DE), prior to implementation into a full 2DE protocol. Prior to sample rehydration, reduction with 100 mM DTT + 5 mM TBP yielded increased spot counts, total signal, and spot circularity (i.e., decreased streaking) compared to other conditions and reduction protocols reported in the literature. The data indicate that many widely implemented reduction protocols are significantly 'under-powered' in terms of proteoform reduction and thus, limit the quality and depth of routine top-down proteomic analyses.

4.
Front Nutr ; 10: 1119274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960209

RESUMO

Introduction: Despite strong epidemiological evidence that dietary factors modulate cancer risk, cancer control through dietary intervention has been a largely intractable goal for over sixty years. The effect of tumour genotype on synergy is largely unexplored. Methods: The effect of seven dietary phytochemicals, quercetin (0-100 µM), curcumin (0-80 µM), genistein, indole-3-carbinol (I3C), equol, resveratrol and epigallocatechin gallate (EGCG) (each 0-200 µM), alone and in all paired combinations om cell viability of the androgen-responsive, pTEN-null (LNCaP), androgen-independent, pTEN-null (PC-3) or androgen-independent, pTEN-positive (DU145) prostate cancer (PCa) cell lines was determined using a high throughput alamarBlue® assay. Synergy, additivity and antagonism were modelled using Bliss additivism and highest single agent equations. Patterns of maximum synergy were identified by polygonogram analysis. Network pharmacology approaches were used to identify interactions with known PCa protein targets. Results: Synergy was observed with all combinations. In LNCaP and PC-3 cells, I3C mediated maximum synergy with five phytochemicals, while genistein was maximally synergistic with EGCG. In contrast, DU145 cells showed resveratrol-mediated maximum synergy with equol, EGCG and genistein, with I3C mediating maximum synergy with only quercetin and curcumin. Knockdown of pTEN expression in DU145 cells abrogated the synergistic effect of resveratrol without affecting the synergy profile of I3C and quercetin. Discussion: Our study identifies patterns of synergy that are dependent on tumour cell genotype and are independent of androgen signaling but are dependent on pTEN. Despite evident cell-type specificity in both maximally-synergistic combinations and the pathways that phytochemicals modulate, these combinations interact with similar prostate cancer protein targets. Here, we identify an approach that, when coupled with advanced data analysis methods, may suggest optimal dietary phytochemical combinations for individual consumption based on tumour molecular profile.Graphical abstract.

5.
Proteomics ; 23(2): e2200307, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36349823

RESUMO

Passive rehydration of immobilized pH gradient (IPG) strips for two-dimensional gel electrophoresis (2DE) has, to our knowledge, never been quantitatively evaluated to determine an ideal rehydration time. Seeking to increase throughput without sacrificing analytical rigor, we report that a substantially shorter rehydration time is accomplished when surface area of IPG strips is increased via microneedling. Rehydration for 4 h, post microneedling, provides comparable results to overnight rehydration in final analyses by 2DE, while also shortening the overall protocol by 1 day.


Assuntos
Proteômica , Proteômica/métodos , Concentração de Íons de Hidrogênio , Eletroforese em Gel Bidimensional/métodos , Focalização Isoelétrica/métodos
6.
Electrophoresis ; 44(3-4): 472-480, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36416355

RESUMO

The goal of integrative top-down proteomics (i.e., two-dimensional gel electrophoresis [2DE] coupled with liquid chromatography and tandem mass spectrometry [LC/MS/MS]) is a routine analytical approach that fully addresses the breadth and depth of proteomes. To accomplish this, there should be no addition, removal, or modification to any constituent proteoforms. To address two-decade old claims of protein losses during front-end proteome resolution using 2DE, here we tested an alternate rehydration method for immobilized pH gradient strips prior to isoelectric focusing (IEF; i.e., faceup compared to facedown) and quantitatively assessed losses during the front-end of 2DE (rehydration and IEF). Using a well-established high-resolution, quantitative 2DE protocol, there were no detectable proteoform losses using the alternate faceup rehydration method. Although there is a <0.25% total loss of proteoforms during standard facedown rehydration, it is insignificant in terms of having any effect on overall proteome resolution (i.e., total spot count and total spot signal). This report is another milestone in integrative top-down proteomics, disproving long-held dogma in the field and confirming that quantitative front-end 2DE/LC/MS/MS is currently the only method to broadly and deeply analyze proteomes by resolving their constituent proteoforms.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Eletroforese em Gel Bidimensional/métodos , Focalização Isoelétrica/métodos
7.
Microbiol Spectr ; 10(4): e0177222, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862953

RESUMO

Zika virus and dengue virus are evolutionarily related and structurally similar mosquito-borne Flaviviruses. These congruencies can lead to cross-reactive antibody binding, whereby antibodies generated from previous dengue virus immunity can augment Zika virus replication in vitro. This phenomenon, termed antibody-dependent enhancement, may participate in the clinical manifestations detected in areas with Flavivirus cocirculations where Zika virus is endemic; however, a causal relationship has yet to be determined. The KU812 mast cell/basophil line was integral in identifying the first Flavivirus infection in mast cells and serves as an effective in vitro model to study dengue virus antibody-dependent enhancement. Mast cells, sentinel white blood cells intrinsic in coordinating early immune defenses, are characteristically situated in the intradermal space and are therefore among the first immune cells interfaced with blood-feeding mosquitoes. Here, we tested whether KU812 cells were permissive to Zika virus, how previous dengue virus immunity might augment Zika virus infection, and whether either condition induces an immunological response. We report an antibody-dependent enhancement effect of Zika virus infection in KU812 cells across multiple time points (48, 72, and 96 hours postinfection [hpi]) and a range of multiplicities of infection (4.0 × 10-3 to 4) using various concentrations of cross-reactive dengue virus monoclonal antibodies (D11C and 1.6D). This antigen-specific antibody-mediated infection was selectively coupled to chemokine ligand 5 (CCL5), interleukin 1ß (IL-1ß), and C-X-C motif chemokine ligand 10 (CXCL10) secretion and a reduction in granzyme B (GrB) release. Therefore, mast cells and/or basophils may significantly augment Zika virus infection in the context of preexisting dengue virus immunity. IMPORTANCE Antibodies generated against one dengue serotype can enhance infection of another by a phenomenon called antibody-dependent enhancement (ADE). Additionally, antigenic similarities between Zika and dengue viruses can promote Zika virus infection by way of ADE in vitro using these very same anti-dengue antibodies. We used the KU812 cell line to demonstrate for the first time that anti-dengue antibodies enhanced infectious Zika virus replication in a mast cell model and specifically increased CCL5, CXCL10, and IL-1ß, while also impairing granzyme B secretion. Furthermore, enhanced Zika virus infection and selective mediator release were mechanistically dependent on fragment crystallizable gamma receptor II (FcγRII). These findings establish a new model for Zika virus research and a new subcategory of immune cells previously unexplored in the context of Zika virus enhancement while being some of the very first immune cells likely to meet a blood-feeding infected mosquito.


Assuntos
Vírus da Dengue , Infecção por Zika virus , Zika virus , Animais , Anticorpos Antivirais , Anticorpos Facilitadores , Quimiocinas , Reações Cruzadas , Vírus da Dengue/fisiologia , Granzimas , Humanos , Ligantes , Mastócitos , Replicação Viral
8.
J Mol Neurosci ; 72(6): 1374-1401, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35644788

RESUMO

A change in visual perception is a frequent early symptom of multiple sclerosis (MS), the pathoaetiology of which remains unclear. Following a slow demyelination process caused by 12 weeks of low-dose (0.1%) cuprizone (CPZ) consumption, histology and proteomics were used to investigate components of the visual pathway in young adult mice. Histological investigation did not identify demyelination or gliosis in the optic tracts, pretectal nuclei, superior colliculi, lateral geniculate nuclei or visual cortices. However, top-down proteomic assessment of the optic nerve/tract revealed a significant change in the abundance of 34 spots in high-resolution two-dimensional (2D) gels. Subsequent liquid chromatography-tandem mass spectrometry (LC-TMS) analysis identified alterations in 75 proteoforms. Literature mining revealed the relevance of these proteoforms in terms of proteins previously implicated in animal models, eye diseases and human MS. Importantly, 24 proteoforms were not previously described in any animal models of MS, eye diseases or MS itself. Bioinformatic analysis indicated involvement of these proteoforms in cytoskeleton organization, metabolic dysregulation, protein aggregation and axonal support. Collectively, these results indicate that continuous CPZ-feeding, which evokes a slow demyelination, results in proteomic changes that precede any clear histological changes in the visual pathway and that these proteoforms may be potential early markers of degenerative demyelinating conditions.


Assuntos
Cuprizona , Esclerose Múltipla , Animais , Cuprizona/toxicidade , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Proteínas , Proteômica/métodos , Vias Visuais/química , Vias Visuais/metabolismo
9.
Glia ; 70(7): 1215-1250, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35107839

RESUMO

In human demyelinating diseases such as multiple sclerosis (MS), an imbalance between demyelination and remyelination can trigger progressive degenerative processes. The clearance of myelin debris (phagocytosis) from the site of demyelination by microglia is critically important to achieve adequate remyelination and to slow the progression of the disease. However, how microglia phagocytose the myelin debris, and why clearance is impaired in MS, is not fully known; likewise, the role of the microglia in remyelination remains unclear. Recent studies using cuprizone (CPZ) as an animal model of central nervous system demyelination revealed that the up-regulation of signaling proteins in microglia facilitates effective phagocytosis of myelin debris. Moreover, during demyelination, protective mediators are released from activated microglia, resulting in the acceleration of remyelination in the CPZ model. In contrast, inadequate microglial activation or recruitment to the site of demyelination, and the production of toxic mediators, impairs remyelination resulting in progressive demyelination. In addition to the microglia-mediated phagocytosis, astrocytes play an important role in the phagocytic process by recruiting microglia to the site of demyelination and producing regenerative mediators. The current review is an update of these emerging findings from the CPZ animal model, discussing the roles of microglia and astrocytes in phagocytosis and myelination.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Animais , Astrócitos/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Fagocitose
10.
J Pers Med ; 12(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35055349

RESUMO

The "best of both worlds" is not often the case when it comes to implementing new health models, particularly in community settings. It is often a struggle between choosing or balancing between two components: depth of research or financial profit. This has become even more apparent with the recent shift to move away from a traditionally reactive model of medicine toward a predictive/preventative one. This has given rise to many new concepts and approaches with a variety of often overlapping aims. The purpose of this perspective is to highlight the pros and cons of the numerous ventures already implementing new concepts, to varying degrees, in community settings of quite differing scales-some successful and some falling short. Scientific wellness is a complex, multifaceted concept that requires integrated experimental/analytical designs that demand both high-quality research/healthcare and significant funding. We currently see the more likely long-term success of those ventures in which any profit is largely reinvested into research efforts and health/healthspan is the primary focus.

11.
DNA Cell Biol ; 41(2): 225-234, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34986032

RESUMO

Hereditary sensory neuropathy type 1A (HSN1A) is an autosomal, dominantly inherited peripheral neuropathy caused by mutations in serine palmitoyl transferase long chain 1 (SPTLC1), involved in the de novo synthesis of sphingolipids. We have previously reported calcium imbalance, as well as mitochondrial and ER stress in both HSN1 patient lymphoblasts and a transiently transfected cell model. In this study, we investigated the role of the Ca2+-activated protease calpain in destabilizing the cell cytoskeleton, by examining calpain activity in SH-SY5Y cells overexpressing the V144D mutant and changes in microtubule-associated proteins (MAP). Intramitochondrial Ca2+ was found to be significantly depleted and cytoplasmic Ca2+ increased in the V144D mutant. Subsequently, calpain and proteasome activity were increased and calpain substrates, microtubule associated proteins MAP2, and tau were significantly reduced in the microtubule fraction of the mutant. Significant changes were also found in motor proteins dynein and KIF2A detected in the microtubule fraction of cells overexpressing the V144D mutation. There was also a reduction in anterograde and retrograde mitochondrial transport velocities in the V144D mutant. These findings strongly implicate cytoskeletal aberration caused by Ca2+ dysregulation and subsequent loss of microtubule transport functions as the cause of axonal dying back that is characteristic of HSN1.


Assuntos
Cálcio
12.
Cell Calcium ; 101: 102503, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844123

RESUMO

In some lysosomal storage diseases (LSD) cholesterol accumulates in vesicles. Whether increased vesicle cholesterol affects vesicle fusion with the plasmalemma, where the fusion pore, a channel between the vesicle lumen and the extracellular space, is formed, is unknown. Super-resolution microscopy revealed that after stimulation of exocytosis, pituitary lactotroph vesicles discharge cholesterol which transfers to the plasmalemma. Cholesterol depletion in lactotrophs and astrocytes, both exhibiting Ca2+-dependent exocytosis regulated by distinct Ca2+sources, evokes vesicle secretion. Although this treatment enhanced cytosolic levels of Ca2+ in lactotrophs but decreased it in astrocytes, this indicates that cholesterol may well directly define the fusion pore. In an attempt to explain this mechanism, a new model of cholesterol-dependent fusion pore regulation is proposed. High-resolution membrane capacitance measurements, used to monitor fusion pore conductance, a parameter related to fusion pore diameter, confirm that at resting conditions reducing cholesterol increases, while enrichment with cholesterol decreases the conductance of the fusion pore. In resting fibroblasts, lacking the Npc1 protein, a cellular model of LSD in which cholesterol accumulates in vesicles, the fusion pore conductance is smaller than in controls, showing that vesicle cholesterol controls fusion pore and is relevant for pathophysiology of LSD.


Assuntos
Exocitose , Lactotrofos , Animais , Membrana Celular , Colesterol , Fusão de Membrana , Ratos , Ratos Wistar , Vesículas Secretórias
13.
Proteomes ; 9(3)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34564541

RESUMO

Proteomes are complex-much more so than genomes or transcriptomes. Thus, simplifying their analysis does not simplify the issue. Proteomes are of proteoforms, not canonical proteins. While having a catalogue of amino acid sequences provides invaluable information, this is the Proteome-lite. To dissect biological mechanisms and identify critical biomarkers/drug targets, we must assess the myriad of proteoforms that arise at any point before, after, and between translation and transcription (e.g., isoforms, splice variants, and post-translational modifications [PTM]), as well as newly defined species. There are numerous analytical methods currently used to address proteome depth and here we critically evaluate these in terms of the current 'state-of-the-field'. We thus discuss both pros and cons of available approaches and where improvements or refinements are needed to quantitatively characterize proteomes. To enable a next-generation approach, we suggest that advances lie in transdisciplinarity via integration of current proteomic methods to yield a unified discipline that capitalizes on the strongest qualities of each. Such a necessary (if not revolutionary) shift cannot be accomplished by a continued primary focus on proteo-genomics/-transcriptomics. We must embrace the complexity. Yes, these are the hard questions, and this will not be easy…but where is the fun in easy?

14.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298997

RESUMO

Multiple Sclerosis (MS) is a demyelinating disease of the human central nervous system having an unconfirmed pathoetiology. Although animal models are used to mimic the pathology and clinical symptoms, no single model successfully replicates the full complexity of MS from its initial clinical identification through disease progression. Most importantly, a lack of preclinical biomarkers is hampering the earliest possible diagnosis and treatment. Notably, the development of rationally targeted therapeutics enabling pre-emptive treatment to halt the disease is also delayed without such biomarkers. Using literature mining and bioinformatic analyses, this review assessed the available proteomic studies of MS patients and animal models to discern (1) whether the models effectively mimic MS; and (2) whether reasonable biomarker candidates have been identified. The implication and necessity of assessing proteoforms and the critical importance of this to identifying rational biomarkers are discussed. Moreover, the challenges of using different proteomic analytical approaches and biological samples are also addressed.


Assuntos
Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Proteoma/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Biologia Computacional , Feminino , Humanos , Masculino , Espectrometria de Massas , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/patologia , Processamento de Proteína Pós-Traducional , Proteômica
15.
Int J Mol Sci ; 21(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256189

RESUMO

Retinoblastoma binding protein 9 (RBBP9) is required for maintaining the expression of both pluripotency and cell cycle genes in human pluripotent stem cells (hPSCs). An siRNA-based study from our group showed it does so by influencing cell cycle progression through the RB/E2F pathway. In non-pluripotent cells, RBBP9 is also known to have serine hydrolase (SH) activity, acting on currently undefined target proteins. The role of RBBP9 SH activity in hPSCs, and during normal development, is currently unknown. To begin assessing whether RBBP9 SH activity might contribute to hPSC maintenance, hPSCs were treated with ML114-a selective chemical inhibitor of RBBP9 SH activity. Stem cells treated with ML114 showed significantly reduced population growth rate, colony size and progression through the cell cycle, with no observable change in cell morphology or decrease in pluripotency antigen expression-suggesting no initiation of hPSC differentiation. Consistent with this, hPSCs treated with ML114 retained the capacity for tri-lineage differentiation, as seen through teratoma formation. Subsequent microarray and Western blot analyses of ML114-treated hPSCs suggest the nuclear transcription factor Y subunit A (NFYA) may be a candidate effector of RBBP9 SH activity in hPSCs. These data support a role for RBBP9 in regulating hPSC proliferation independent of differentiation, whereby inhibition of RBBP9 SH activity de-couples decreased hPSC proliferation from initiation of differentiation.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Células-Tronco Pluripotentes/citologia , Inibidores de Serina Proteinase/farmacologia , Biomarcadores/metabolismo , Fator de Ligação a CCAAT/metabolismo , Contagem de Células , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Instabilidade Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cariótipo , Proteínas de Neoplasias/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo
16.
Front Immunol ; 11: 572186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117365

RESUMO

Multiple Sclerosis (MS) is traditionally considered an autoimmune-mediated demyelinating disease, the pathoetiology of which is unknown. However, the key question remains whether autoimmunity is the initiator of the disease (outside-in) or the consequence of a slow and as yet uncharacterized cytodegeneration (oligodendrocytosis), which leads to a subsequent immune response (inside-out). Experimental autoimmune encephalomyelitis has been used to model the later stages of MS during which the autoimmune involvement predominates. In contrast, the cuprizone (CPZ) model is used to model early stages of the disease during which oligodendrocytosis and demyelination predominate and are hypothesized to precede subsequent immune involvement in MS. Recent studies combining a boost, or protection, to the immune system with disruption of the blood brain barrier have shown CPZ-induced oligodendrocytosis with a subsequent immune response. In this Perspective, we review these recent advances and discuss the likelihood of an inside-out vs. an outside-in pathoetiology of MS.


Assuntos
Sistema Nervoso Central/fisiologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Oligodendroglia/imunologia , Animais , Autoimunidade , Cuprizona , Doenças Desmielinizantes , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos
17.
Anal Biochem ; 605: 113853, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32687811

RESUMO

Handling chemicals that require specific safety precautions and protections generates the need for hazardous waste removal and transportation costs. With the growing effort to reduce both cost per analysis and the environmental footprint of research, we report an effective alternative to the widely used methanol/acetic acid gel fixation solution. 1.0 M citric acid dissolved in 5% acetic acid (C3A) provides comparable results following both SDS-PAGE and two-dimensional gel electrophoresis, while also eliminating waste removal costs.


Assuntos
Resinas Acrílicas/química , Eletroforese em Gel Bidimensional/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Proteínas/análise , Coloração e Rotulagem/métodos , Animais , Encéfalo , Lens (Planta)/química , Saúde Ocupacional , Ratos , Poluentes Químicos da Água
18.
Front Cell Neurosci ; 14: 43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210765

RESUMO

Cuprizone (CPZ)-feeding in mice induces atrophy of peripheral immune organs (thymus and spleen) and suppresses T-cell levels, thereby limiting its use as a model for studying the effects of the immune system in demyelinating diseases such as Multiple Sclerosis (MS). To investigate whether castration (Cx) can protect the peripheral immune organs from CPZ-induced atrophy and enable T-cell recruitment into the central nervous system (CNS) following a breach of the blood-brain barrier (BBB), three related studies were carried out. In Study 1, Cx prevented the dose-dependent reductions (0.1% < 0.2% CPZ) in thymic and splenic weight, size of the thymic medulla and splenic white pulp, and CD4 and CD8 (CD4/8) levels remained comparable to gonadally intact (Gi) control males. Importantly, 0.1% and 0.2% CPZ were equipotent at inducing central demyelination and glial activation. In Study 2, combining Cx with 0.1% CPZ-feeding and BBB disruption with pertussis toxin (PT) enhanced CD8+ T-cell recruitment into the CNS. The increased CD8+ T-cell level observed in the parenchyma of the cerebrum, cerebellum, brainstem and spinal cord were confirmed by flow cytometry and western blot analyses of CNS tissue. In Study 3, PT+0.1% CPZ-feeding to Gi female mice resulted in similar effects on the peripheral immune organs, CNS demyelination, and gliosis comparable to Gi males, indicating that testosterone levels alone were not responsible for the immune response seen in Study 2. The combination of Cx+0.1% CPZ-feeding+PT indicates that CPZ-induced demyelination can trigger an "inside-out" immune response when the peripheral immune system is spared and may provide a better model to study the initiating events in demyelinating conditions such as MS.

19.
Fetal Diagn Ther ; 47(6): 497-506, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32097912

RESUMO

BACKGROUND: Spontaneous preterm birth is the leading cause of perinatal morbidity and mortality worldwide and continues to present a major clinical dilemma. We previously reported that a number of protein species were dysregulated in maternal serum collected at 11-13+6 weeks' gestation from pregnancies that continued to labour spontaneously and deliver preterm. OBJECTIVES AND METHODS: In this study, we aimed to validate changes seen in 4 candidate protein species: alpha-1-antitrypsin, vitamin D-binding protein (VDBP), alpha-1beta-glycoprotein and apolipoprotein A-1 in a larger cohort of women using a western blot approach. RESULTS: Serum levels of all 4 proteins were reduced in women who laboured spontaneously and delivered preterm. This reduction was significant for VDBP (p = 0.04), which has been shown to be involved in a plethora of essential biological functions, including actin scavenging, fatty acid transport, macrophage activation and chemotaxis. CONCLUSIONS: The decrease in select proteoforms of VDBP may result in an imbalance in the optimal intrauterine environment for the developing foetus as well as to a successful uncomplicated pregnancy. Thus, certain (phosphorylated) species of VDBP may be of value in developing a targeted approach to the early prediction of spontaneous preterm labour. Importantly, this study raises the importance of a focus on proteoforms and the need for any biomarker validation process to most effectively take these into account rather than the more widespread practice of simply focussing on the primary amino acid sequence of a protein.


Assuntos
Biomarcadores/sangue , Idade Gestacional , Nascimento Prematuro/sangue , Adulto , Apolipoproteína A-I/sangue , Feminino , Glicoproteínas/sangue , Humanos , Imunoglobulinas/sangue , Recém-Nascido , Masculino , Gravidez , Primeiro Trimestre da Gravidez , Reprodutibilidade dos Testes , Proteína de Ligação a Vitamina D/sangue , alfa 1-Antitripsina/sangue
20.
Brain Behav Immun ; 87: 508-523, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32014578

RESUMO

Feeding cuprizone (CPZ) to mice causes demyelination and reactive gliosis in the central nervous system (CNS), hallmarks of some neurodegenerative diseases like multiple sclerosis. However, relatively little is known regarding the behavioural deficits associated with CPZ-feeding and much of what is known is contradictory. This study investigated whether 37 days oral feeding of 0.2% CPZ to young adult mice evoked sensorimotor behavioural changes. Behavioural tests included measurements of nociceptive withdrawal reflex responses and locomotor tests. Additionally, these were compared to histological analysis of the relevant CNS regions by analysis of neuronal and glial cell components. CPZ-fed mice exhibited more foot slips in walking ladder and beam tests compared to controls. In contrast, no changes in nociceptive thresholds to thermal or mechanical stimuli occurred between groups. Histological analysis showed demyelination throughout the CNS, which was most prominent in white matter tracts in the cerebrum but was also elevated in areas such as the hippocampus, basal ganglia and diencephalon. Profound demyelination and gliosis was seen in the deep cerebellar nuclei and brain stem regions associated with the vestibular system. However, in the spinal cord changes were minimal. No loss of oligodendrocytes, neurons or motoneurons occurred but a significant increase in astrocyte staining ensued throughout the white matter of the spinal cord. The results suggest that CPZ differentially affects oligodendrocytes throughout the CNS and induces subtle motor changes such as ataxia. This is associated with deficits in CNS regions associated with motor and balance functions such as the cerebellum and brain stem.


Assuntos
Cuprizona , Doenças Desmielinizantes , Animais , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA