Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Cancer Res ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163092

RESUMO

PURPOSE: Patients with high-grade serous ovarian carcinoma (HGSOC) are virtually insensitive to immune checkpoint inhibitors (ICIs) employed as standalone therapeutics, at least in part reflecting microenvironmental immunosuppression. Thus, conventional chemotherapeutics and targeted anticancer agents that not only mediate cytotoxic effects but also promote the recruitment of immune effector cells to the HGSOC microenvironment stand out as promising combinatorial partners for ICIs in this oncological indication. EXPERIMENTAL DESIGN: We harnessed a variety of transcriptomic, spatial and functional assays to characterize the differential impact of neo-adjuvant paclitaxel-carboplatin on the immunological configuration of paired primary and metastatic HGSOC biopsies as compared to NACT-naïve HGSOC samples from 5 independent patient cohorts. RESULTS: We found neo-adjuvant chemotherapy (NACT)-driven endoplasmic reticulum stress and calreticulin exposure in metastatic HGSOC lesions culminates with the establishment of a dense immune infiltrate including follicular T cells (TFH cells), a prerequisite for mature tertiary lymphoid structure (TLS) formation. In this context, TLS maturation was associated with an increased intratumoral density of ICI-sensitive TCF1+PD-1+ CD8+ T cells over their ICI-insensitive TIM-3+PD-1+ counterparts. Consistent with this notion, chemotherapy coupled with a PD-1-targeting ICI provided a significant survival benefit over either therapeutic approach in syngeneic models of HGSOC bearing high (but not low) tumor mutational burden. CONCLUSION: Altogether, our findings suggest that NACT promotes TLS formation and maturation in HGSOC lesions, de facto preserving an intratumoral ICI-sensitive T-cell phenotype. These observations emphasize the role of rational design, especially relative to the administration schedule, for clinical trials testing chemotherapy plus ICIs in patients with HGSOC.

2.
Bioinformatics ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177091

RESUMO

MOTIVATION: Circulating-cell free DNA (cfDNA) is widely explored as a non-invasive biomarker for cancer screening and diagnosis. The ability to decode the cells of origin in cfDNA would provide biological insights into pathophysiological mechanisms, aiding in cancer characterization and directing clinical management and follow-up. RESULTS: We developed a DNA methylation signature-based deconvolution algorithm, MetDecode, for cancer tissue origin identification. We built a reference atlas exploiting de novo and published whole-genome methylation sequencing data for colorectal, breast, ovarian and cervical cancer, and blood-cell-derived entities. MetDecode models the contributors absent in the atlas with methylation patterns learnt on-the-fly from the input cfDNA methylation profiles. Additionally, our model accounts for the coverage of each marker region to alleviate potential sources of noise. In-silico experiments showed a limit of detection down to 2.88% of tumour tissue contribution in cfDNA. MetDecode produced Pearson correlation coefficients above 0.95 and outperformed other methods in simulations (p < 0.001; T-test; one-sided). In plasma cfDNA profiles from cancer patients, MetDecode assigned the correct tissue-of-origin in 84.2% of cases. In conclusion, MetDecode can unravel alterations in the cfDNA pool components by accurately estimating the contribution of multiple tissues, while supplied with an imperfect reference atlas. AVAILABILITY: MetDecode is available at https://github.com/JorisVermeeschLab/MetDecode. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

3.
Front Oncol ; 14: 1402851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993641

RESUMO

Background: Ovarian cancer is the leading cause of mortality among gynecological malignancies. Carboplatin and poly (ADP-ribose) polymerase inhibitors (PARPi) are often implemented in the treatment of ovarian cancer. Homologous recombination deficient (HRD) tumors demonstrate increased sensitivity to these treatments; however, many ovarian cancer patients are homologous recombination proficient (HRP). TTFields are non-invasive electric fields that induce an HRD-like phenotype in various cancer types. The current study aimed to investigate the impact of TTFields applied together with carboplatin or PARPi (olaparib or niraparib) in preclinical ovarian cancer models. Methods: A2780 (HRP), OVCAR3 (HRD), and A2780cis (platinum-resistant) human ovarian cancer cells were treated in vitro with TTFields (1 V/cm RMS, 200 kHz, 72 h), alone or with various drug concentrations. Treated cells were measured for cell count, colony formation, apoptosis, DNA damage, expression of DNA repair proteins, and cell cycle. In vivo, ID8-fLuc (HRP) ovarian cancer cells were inoculated intraperitoneally to C57BL/6 mice, which were then treated with either sham, TTFields (200 kHz), olaparib (50 mg/kg), or TTFields plus olaparib; over a period of four weeks. Tumor growth was analyzed using bioluminescent imaging at treatment cessation; and survival analysis was performed. Results: The nature of TTFields-drug interaction was dependent on the drug's underlying mechanism of action and on the genetic background of the cells, with synergistic interactions between TTFields and carboplatin or PARPi seen in HRP and resistant cells. Treated cells demonstrated elevated levels of DNA damage, accompanied by G2/M arrest, and induction of an HRD-like phenotype. In the tumor-bearing mice, TTFields and olaparib co-treatment resulted in reduced tumor volume and a survival benefit relative to olaparib monotherapy and to control. Conclusion: By inducing an HRD-like phenotype, TTFields sensitize HRP and resistant ovarian cancer cells to treatment with carboplatin or PARPi, potentially mitigating a-priori and de novo drug resistance, a major limitation in ovarian cancer treatment.

5.
Cancers (Basel) ; 16(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38539483

RESUMO

Immune checkpoint inhibitor (ICI) therapy has proven revolutionary in the treatment of some cancers. However, ovarian cancer remains unresponsive to current leading ICIs, such as anti-PD1 or anti-PD-L1. In this article, we explored the potential of an upcoming checkpoint molecule, T-cell immunoglobulin and mucin domain 3 (TIM3), for the treatment of ovarian cancer using a syngeneic orthotopic mouse model (ID8-fLuc). Besides therapeutic efficacy, we focused on exploring immune changes in tumor tissue and peritoneal fluid. Our results showed no improvement in survival in ovarian cancer-bearing mice after anti-TIM3 treatment when used as monotherapy nor when combined with anti-PD1 or standard-of-care chemotherapy (carboplatin/paclitaxel). This was reflected in the unaltered immune infiltration in treated mice compared to control mice. Altering the order of drug administration within the combination treatment altered the survival results, but did not result in a survival benefit over chemotherapy alone. These findings highlight the need for further preclinical studies to find beneficial treatment schemes and combination therapies for ovarian cancer.

6.
Methods Cell Biol ; 183: 381-397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38548420

RESUMO

Glioblastoma (GBM) is the deadliest of all brain cancers. GBM patients receive an intensive treatment schedule consisting of surgery, radiotherapy and chemotherapy, which only modestly extends patient survival. Therefore, preclinical studies are testing novel experimental treatments. In such preclinical studies, these treatments are administered as monotherapy in the majority of cases; conversely, in patients the new treatments are always combined with the standard of care. Most likely, this difference contributes to the failure of clinical trials despite the successes of the preclinical studies. In this methodological study, we show in detail how to implement the full clinical standard of care in preclinical GBM research. Systematically testing new treatments, including cellular immunotherapies, in combination with the clinical standard of care can result in a better translation of preclinical results to the clinic and ultimately increase patient survival.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/tratamento farmacológico , Temozolomida/uso terapêutico , Padrão de Cuidado , Neoplasias Encefálicas/tratamento farmacológico
7.
Gynecol Obstet Invest ; 89(2): 73-86, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38382486

RESUMO

BACKGROUND: Uterine fibroids are benign monoclonal tumors originating from the smooth muscle cells of the myometrium, constituting the most prevalent pathology within the female genital tract. Uterine sarcomas, although rare, still represent a diagnostic challenge and should be managed in centers with adequate expertise in gynecological oncology. OBJECTIVES: This article is aimed to summarize and discuss cutting-edge elements about the diagnosis and management of uterine fibroids and sarcomas. METHODS: This paper is a report of the lectures presented in an expert meeting about uterine fibroids and sarcomas held in Palermo in February 2023. OUTCOME: Overall, the combination of novel molecular pathways may help combine biomarkers and expert ultrasound for the differential diagnosis of uterine fibroids and sarcomas. On the one hand, molecular and cellular maps of uterine fibroids and matched myometrium may enhance our understanding of tumor development compared to histologic analysis and whole tissue transcriptomics, and support the development of minimally invasive treatment strategies; on the other hand, ultrasound imaging allows in most of the cases a proper mapping the fibroids and to differentiate between benign and malignant lesions, which need appropriate management. CONCLUSIONS AND OUTLOOK: The choice of uterine fibroid management, including pharmacological approaches, surgical treatment, or other strategies, such as high-intensity focused ultrasound (HIFU), should be carefully considered, taking into account the characteristics of the patient and reproductive prognosis.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Leiomioma , Sarcoma , Miomectomia Uterina , Neoplasias Uterinas , Feminino , Humanos , Resultado do Tratamento , Leiomioma/diagnóstico , Leiomioma/terapia , Leiomioma/patologia , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/terapia , Neoplasias Uterinas/patologia , Prognóstico , Sarcoma/diagnóstico , Sarcoma/terapia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos
8.
Br J Cancer ; 130(6): 934-940, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38243011

RESUMO

BACKGROUND: Several diagnostic prediction models to help clinicians discriminate between benign and malignant adnexal masses are available. This study is a head-to-head comparison of the performance of the Assessment of Different NEoplasias in the adneXa (ADNEX) model with that of the Risk of Ovarian Malignancy Algorithm (ROMA). METHODS: This is a retrospective study based on prospectively included consecutive women with an adnexal tumour scheduled for surgery at five oncology centres and one non-oncology centre in four countries between 2015 and 2019. The reference standard was histology. Model performance for ADNEX and ROMA was evaluated regarding discrimination, calibration, and clinical utility. RESULTS: The primary analysis included 894 patients, of whom 434 (49%) had a malignant tumour. The area under the receiver operating characteristic curve (AUC) was 0.92 (95% CI 0.88-0.95) for ADNEX with CA125, 0.90 (0.84-0.94) for ADNEX without CA125, and 0.85 (0.80-0.89) for ROMA. ROMA, and to a lesser extent ADNEX, underestimated the risk of malignancy. Clinical utility was highest for ADNEX. ROMA had no clinical utility at decision thresholds <27%. CONCLUSIONS: ADNEX had better ability to discriminate between benign and malignant adnexal tumours and higher clinical utility than ROMA. CLINICAL TRIAL REGISTRATION: clinicaltrials.gov NCT01698632 and NCT02847832.


Assuntos
Doenças dos Anexos , Neoplasias Ovarianas , Humanos , Feminino , Estudos Retrospectivos , Ultrassonografia , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/cirurgia , Neoplasias Ovarianas/patologia , Doenças dos Anexos/diagnóstico , Doenças dos Anexos/cirurgia , Doenças dos Anexos/patologia , Algoritmos , Sensibilidade e Especificidade , Antígeno Ca-125
9.
J Pathol ; 262(3): 271-288, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38230434

RESUMO

Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Biomarcadores Tumorais/genética , Prognóstico , Fenótipo , Reino Unido , Microambiente Tumoral
10.
Cells ; 13(1)2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38201211

RESUMO

Among cancer diagnoses in women, ovarian cancer has the fifth-highest mortality rate. Current treatments are unsatisfactory, and new therapies are highly needed. Immunotherapies show great promise but have not reached their full potential in ovarian cancer patients. Implementation of an immune readout could offer better guidance and development of immunotherapies. However, immune profiling is often performed using a flow cytometer, which is bulky, complex, and expensive. This equipment is centralized and operated by highly trained personnel, making it cumbersome and time-consuming. We aim to develop a disposable microfluidic chip capable of performing an immune readout with the sensitivity needed to guide diagnostic decision making as close as possible to the patient. As a proof of concept of the fluidics module of this concept, acquisition of a limited immune panel based on CD45, CD8, programmed cell death protein 1 (PD1), and a live/dead marker was compared to a conventional flow cytometer (BD FACSymphony). Based on a dataset of peripheral blood mononuclear cells of 15 patients with ovarian cancer across different stages of treatment, we obtained a 99% correlation coefficient for the detection of CD8+PD1+ T cells relative to the total amount of CD45+ white blood cells. Upon further system development comprising further miniaturization of optics, this microfluidics chip could enable immune monitoring in an outpatient setting, facilitating rapid acquisition of data without the need for highly trained staff.


Assuntos
Pacientes Ambulatoriais , Neoplasias Ovarianas , Humanos , Feminino , Microfluídica , Leucócitos Mononucleares , Monitorização Imunológica , Neoplasias Ovarianas/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA