Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
JCI Insight ; 9(9)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602775

RESUMO

Allogeneic hematopoietic stem cell transplantation (aHSCT) can cure patients with otherwise fatal leukemias and lymphomas. However, the benefits of aHSCT are limited by graft-versus-host disease (GVHD). Minnelide, a water-soluble analog of triptolide, has demonstrated potent antiinflammatory and antitumor activity in several preclinical models and has proven both safe and efficacious in clinical trials for advanced gastrointestinal malignancies. Here, we tested the effectiveness of Minnelide in preventing acute GVHD as compared with posttransplant cyclophosphamide (PTCy). Strikingly, we found Minnelide improved survival, weight loss, and clinical scores in an MHC-mismatched model of aHSCT. These benefits were also apparent in minor MHC-matched aHSCT and xenogeneic HSCT models. Minnelide was comparable to PTCy in terms of survival, GVHD clinical score, and colonic length. Notably, in addition to decreased donor T cell infiltration early after aHSCT, several regulatory cell populations, including Tregs, ILC2s, and myeloid-derived stem cells in the colon were increased, which together may account for Minnelide's GVHD suppression after aHSCT. Importantly, Minnelide's GVHD prevention was accompanied by preservation of graft-versus-tumor activity. As Minnelide possesses anti-acute myeloid leukemia (anti-AML) activity and is being applied in clinical trials, together with the present findings, we conclude that this compound might provide a new approach for patients with AML undergoing aHSCT.


Assuntos
Diterpenos , Compostos de Epóxi , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Fenantrenos , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/tratamento farmacológico , Animais , Camundongos , Transplante de Células-Tronco Hematopoéticas/métodos , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Compostos de Epóxi/farmacologia , Compostos de Epóxi/uso terapêutico , Fenantrenos/farmacologia , Fenantrenos/uso terapêutico , Humanos , Transplante Homólogo , Feminino , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Modelos Animais de Doenças , Efeito Enxerto vs Leucemia/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino
2.
Transplant Cell Ther ; 29(5): 341.e1-341.e9, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804930

RESUMO

The present studies examined experimental transplant outcomes using mobilized peripheral blood from mice and humans together with FoxP3+Treg cells. Donor mice were treated with filgrastim and / or plerixafor and their peripheral blood (PB) displayed significant elevations in hematopoietic stem and progenitor populations. Some of these PB donors were concurrently administered a Treg expansion strategy consisting of a TL1A-Ig fusion protein low dose rIL-2. A significant increase (4-5x) in the frequency Tregs occurred during mobilization. C3H.SW PB was collected from mobilized and Treg unexpanded ("TrUM") or mobilized and Treg expanded ("TrEM") donors and transplanted into MHC-matched B6 (H2b) recipients. Recipients of TrEM, exhibited significantly reduced weight loss and clinical GVHD scores compared to recipients of TrUM. Notably, recipients of TrEM exhibited comparable GVL activity to TrUM recipients against leukemia levels. Next, huTregs (CD4+CD25+CD127lo) from a healthy human PB mobilized donor were expanded ex-vivo prior to transplant into NSG/ NOD-scid IL2Rgammanull mice. We found that treatment with ex-vivo expanded huTregs resulted in significant reduction of lethality and clinical xGVHD scores. Notably, post-transplant, PB huTregs levels remained elevated and the frequency of huCD4+Tconv and CD8+ cells was diminished supporting the improved xGVHD outcomes. These findings demonstrated that the use of mPB containing elevated Treg levels significantly reduced GVHD following "MUD" and MHC-mismatched mouse HSCT without loss of GVL activity. Moreover, utilizing ex-vivo expanded huTregs from a mobilized PB donor and added back to donor PB ameliorated xGVHD. In total, these studies support the notion that in vivo or ex-vivo manipulation of donor Tregs together with mobilized peripheral blood could provide therapeutic approaches to improve aHSCT outcomes.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Compostos Heterocíclicos , Humanos , Animais , Camundongos , Linfócitos T Reguladores/transplante , Doadores de Sangue , Mobilização de Células-Tronco Hematopoéticas , Camundongos Endogâmicos C3H , Camundongos Endogâmicos NOD , Transplante de Células-Tronco Hematopoéticas/métodos , Doença Enxerto-Hospedeiro/prevenção & controle , Proteínas
3.
Front Immunol ; 13: 932527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799783

RESUMO

Human and mouse CD4+FoxP3+ T cells (Tregs) comprise non-redundant regulatory compartments which maintain self-tolerance and have been found to be of potential therapeutic usefulness in autoimmune disorders and transplants including allogeneic hematopoietic stem cell transplantation (allo-HSCT). There is substantial literature interrogating the application of donor derived Tregs for the prevention of graft versus host disease (GVHD). This Mini-Review will focus on the recipient's Tregs which persist post-transplant. Although treatment in patients with low dose IL-2 months post-HSCT are encouraging, manipulating Tregs in recipients early post-transplant is challenging, in part likely an indirect consequence of damage to the microenvironment required to support Treg expansion of which little is understood. This review will discuss the potential for manipulating recipient Tregs in vivo prior to and after HSCT (fusion proteins, mAbs). Strategies that would circumvent donor/recipient peripheral blood harvest, cell culture and ex-vivo Treg expansion will be considered for the translational application of Tregs to improve HSCT outcomes.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Tolerância Imunológica , Camundongos , Tolerância a Antígenos Próprios , Linfócitos T Reguladores
4.
Transplant Cell Ther ; 28(6): 303.e1-303.e7, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35302008

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is complicated by graft- versus-host disease (GVHD), which causes immune dysfunction and further delays immune reconstitution through its effects on primary and secondary lymphoid organs. Treatments to prevent GVHD and improve immune recovery following allo-HSCT are needed. Post-transplantation cyclophosphamide (PTCy) is a well-established and clinically widely used method for GVHD prophylaxis after HLA-matched as well as haploidentical allo-HSCT, as well as a promising strategy in the setting of mismatched unrelated donor allo-HSCT. Recently, regulatory T cells (Tregs), a critical subset for immune homeostasis and tolerance induction, have been evaluated for use as GVHD prophylaxis in experimental models and clinical trials. Natural killer (NK) cells are one of the first lymphoid populations to reconstitute following allo-HSCT and are important mediators of protective immunity against pathogens, and are also critical for limiting post-transplantation relapse of hematologic cancers. Several reports have noted that a delay in NK cell recovery may occur following experimental mouse allo-HSCT as well as after clinical allo-HSCT. Here we examined how 2 treatment strategies, PTCy and donor expanded Tregs (TrED), in experimental MHC-matched allo-HSCT affect NK recovery. Our experiments show that both strategies improved NK cell numbers, with PTCy slightly better than TrED, early after allo-HSCT (1 month) compared with untreated allo-HSCT recipients. Importantly, NK cell IFN-γ production and cytotoxic function, as reflected by CD107 expression as well as in vivo killing of NK-sensitive tumor cells, were improved using either PTCy or TrED versus control allo-HSCT recipients. In conclusion, both prophylactic treatments were found to be beneficial for NK recovery and NK cell function following MHC-matched minor antigen-mismatched experimental allo-HSCT. Improved NK recovery could help provide early immunity toward tumors and pathogens in these transplant recipients.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Ciclofosfamida/uso terapêutico , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/métodos , Células Matadoras Naturais , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Linfócitos T Reguladores , Transplante Homólogo
5.
Front Immunol ; 12: 636789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33737937

RESUMO

Corneal transplantation (CT) is the most frequent type of solid organ transplant (SOT) performed worldwide. Unfortunately, immunological rejection is the primary cause of graft failure for CT and therefore advances in immune regulation to induce tolerance remains an unmet medical need. Recently, our work and others in pre-clinical studies found that cyclophosphamide (Cy) administered after ("post-transplant," PTCy) hematopoietic stem cell transplantation (HSCT), i.e., liquid transplants is effective for graft vs. host disease prophylaxis and enhances overall survival. Importantly, within the past 10 years, PTCy has been widely adopted for clinical HSCT and the results at many centers have been extremely encouraging. The present studies found that Cy can be effectively employed to prolong the survival of SOT, specifically mouse corneal allografts. The results demonstrated that the timing of PTCy administration is critical for these CT and distinct from the kinetics employed following allogeneic HSCT. PTCy was observed to interfere with neovascularization, a process critically associated with immune rejection of corneal tissue that ensues following the loss of ocular "immune privilege." PTCy has the potential to delete or directly suppress allo-reactive T cells and treatment here was shown to diminish T cell rejection responses. These PTCy doses were observed to spare significant levels of CD4+ FoxP3+ (Tregs) which were found to be functional and could readily receive stimulating signals leading to their in vivo expansion via TNFRSF25 and CD25 agonists. In total, we posit future studies can take advantage of Cy based platforms to generate combinatorial strategies for long-term tolerance induction.


Assuntos
Transplante de Córnea , Ciclofosfamida/uso terapêutico , Rejeição de Enxerto/prevenção & controle , Complicações Pós-Operatórias/prevenção & controle , Aloenxertos/imunologia , Animais , Células Cultivadas , Fatores de Transcrição Forkhead/genética , Rejeição de Enxerto/etiologia , Humanos , Tolerância Imunológica , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais
6.
Am J Pathol ; 190(10): 2000-2012, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32745461

RESUMO

Regulatory T cells (Tregs) are non-redundant mediators of immune tolerance that are critical to prevent autoimmune disease and promote an anti-inflammatory tissue environment. Many individuals experience chronic diseases and physiologic changes associated with aging requiring long-term medication. Unfortunately, adverse effects accompany every pharmacologic intervention and may affect overall outcomes. We focus on medications typically prescribed during the treatment of prevalent chronic diseases and disorders, including cardiovascular disease, autoimmune disease, and menopausal symptoms, that affect >200 million individuals in the United States. Increasing studies continue to report that treatment of patients with estrogen, metformin, statins, vitamin D, and tumor necrosis factor blockers are unintentionally modulating the Treg compartment. Effects of these medications likely comprise direct and/or indirect interaction with Tregs via other immune and parenchymal populations. Differing and sometimes opposing effects on the Treg compartment have been observed using the same medication. The length of treatment, dosing regimen and stage of disease, patient age, ethnicity, and sex may account for such findings and determine the specific signaling pathways affected by the medication. Enhancing the Treg compartment can skew the patient's immune system toward an anti-inflammatory phenotype and therefore could provide unanticipated benefit. Currently, multiple medicines prescribed to large numbers of patients influence the Treg compartment; however, how such effects affect their disease outcome and long-term health remains unclear.


Assuntos
Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Fatores Imunológicos/metabolismo , Linfócitos T Reguladores/imunologia , Anti-Inflamatórios/farmacologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Fatores Imunológicos/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Vitamina D/metabolismo
7.
Sci Transl Med ; 12(552)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669421

RESUMO

The stimulator of interferon genes (STING) pathway has been proposed as a key regulator of gastrointestinal homeostasis and inflammatory responses. Although STING reportedly protects against gut barrier damage and graft-versus-host disease (GVHD) after major histocompatibility complex (MHC)-mismatched allogeneic hematopoietic stem cell transplantation (aHSCT), its effect in clinically relevant MHC-matched aHSCT is unknown. Studies here demonstrate that STING signaling in nonhematopoietic cells promoted MHC-matched aHSCT-induced GVHD and that STING agonists increased type I interferon and MHC I expression in nonhematopoietic mouse intestinal organoid cultures. Moreover, mice expressing a human STING allele containing three single-nucleotide polymorphisms associated with decreased STING activity also developed reduced MHC-matched GVHD, demonstrating STING's potential clinical importance. STING-/- recipients experienced reduced GVHD with transplant of purified donor CD8+ T cells in both MHC-matched and MHC-mismatched models, reconciling the seemingly disparate results. Further examination revealed that STING deficiency reduced the activation of donor CD8+ T cells early after transplant and promoted recipient MHC class II+ antigen-presenting cell (APC) survival. Therefore, APC persistence in STING pathway absence may account for the increased GVHD mediated by CD4+ T cells in completely mismatched recipients. In total, our findings have important implications for regulating clinical GVHD by targeting STING early after aHSCT and demonstrate that an innate immune pathway has opposing effects on the outcome of aHSCT, depending on the donor/recipient MHC disparity.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Transplante de Medula Óssea , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Camundongos , Subpopulações de Linfócitos T
8.
Front Immunol ; 9: 3104, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30733722

RESUMO

A recent approach for limiting production of pro-inflammatory cytokines has been to target bromodomain and extra-terminal (BET) proteins. These epigenetic readers of histone acetylation regulate transcription of genes involved in inflammation, cardiovascular disease, and cancer. Development of BET inhibitors (BETi) has generated enormous interest for their therapeutic potential. Because inflammatory signals and donor T cells promote graft-versus-host disease (GVHD), regulating both pathways could be effective to abrogate this disorder. The objective of the present study was to identify a BETi which did not interfere in vivo with CD4+FoxP3+ regulatory T cell (Treg) expansion and function to utilize together with Tregs following allogeneic hematopoietic stem cell transplantation (aHSCT) to ameliorate GVHD. We have reported that Tregs can be markedly expanded and selectively activated with increased functional capacity by targeting TNFRSF25 and CD25 with TL1A-Ig and low dose IL-2, respectively. Here, mice were treated over 7 days (TL1A-Ig + IL-2) together with BETi. We found that the BETi EP11313 did not decrease frequency/numbers or phenotype of expanded Tregs as well as effector molecules, such as IL-10 and TGF-ß. However, BETi JQ1 interfered with Treg expansion and altered subset distribution and phenotype. Notably, in Treg expanded mice, EP11313 diminished tnfa and ifng but not il-2 RNA levels. Remarkably, Treg pSTAT5 expression was not affected by EP11313 supporting the notion that Treg IL-2 signaling remained intact. MHC-mismatched aHSCT (B6 → BALB/c) was performed using in vivo expanded donor Tregs with or without EP11313 short-term treatment in the recipient. Early post-transplant, improvement in the splenic and LN CD4/CD8 ratio along with fewer effector cells and high Treg levels in aHSCT recipients treated with expanded Tregs + EP11313 was detected. Interestingly, this group exhibited a significant diminution of GVHD clinical score with less skin and ocular involvement. Finally, using low numbers of highly purified expanded Tregs, improved clinical GVHD scores were observed in EP11313 treated recipients. In total, we conclude that use of this novel combinatorial strategy can suppress pre-clinical GVHD and posit, in vivo EP11313 treatment might be useful combined with Treg expansion therapy for treatment of diseases involving inflammatory responses.


Assuntos
Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunossupressores/farmacologia , Imunoterapia Adotiva/métodos , Linfócitos T Reguladores/transplante , Animais , Azepinas/farmacologia , Azepinas/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Doença Enxerto-Hospedeiro/imunologia , Humanos , Imunossupressores/uso terapêutico , Interleucina-2/imunologia , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Domínios Proteicos/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transplante Homólogo/efeitos adversos , Resultado do Tratamento , Triazóis/farmacologia , Triazóis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA