Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-11913458

RESUMO

Cultured L-929 cells respond to media-made hyperosmotic (600 mOsmol/kg H2O) by addition of NaCl, sorbitol or proline by adjusting successively their intracellular level in different osmolytes: Na+, K+, amino acids and sorbitol. In the NaCl medium, Na+ and K+ are first to increase. Their concentration is then down-regulated while they are replaced by less disrupting osmolytes: amino acids and sorbitol. The amino-acid level is also adjusted with respect to the increase in sorbitol which starts only after 24 h, depending on the induction of aldose reductase. A similar evolution in the amount of these osmolytes is observed, with different time scales and amplitudes, depending on whether the osmotic shocks are applied abruptly or slowly, in a more physiological way. The interplay between the osmolytes is also different depending on their availability in the external medium. Such complex evolutions indicate that a cascade of interacting signals must be considered to account for the overall regulation process. It can hardly be fitted into a model implicating a single primary signalling event (early increase in ions or decrease in cell volume) as usually postulated. Also, the volume up-regulation is not significantly different in the different conditions, showing that it is not primarily dependent on the adjustment of the intracellular osmolarity which is reached immediately upon cell shrinkage and is maintained all over, independently of the availability and changes in nature of the osmolytes.


Assuntos
Concentração Osmolar , Aldeído Redutase/metabolismo , Aminoácidos/metabolismo , Animais , Linhagem Celular , Meios de Cultura , Eletroforese em Gel de Poliacrilamida , Camundongos , Cloreto de Sódio/metabolismo , Sorbitol/metabolismo
2.
Planta ; 206(1): 131-7, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9715535

RESUMO

In order to test whether an increased export of carbohydrates by leaves and starch mobilization are critical for floral transition in Arabidopsis thaliana, the Columbia ecotype as well as its starchless mutant pgm and starch-in-excess mutant sex1 were investigated. Induction of flowering was achieved by exposure of plants to either one long day (LD) or one displaced short day (DSD). The following conclusions were drawn: (i) Both the pgm and sex1 mutants have a late-flowering phenotype in days shorter than 16 h. (ii) When inductive treatments cause a large, percentage of induced plants, there is always a large, early and transient increase in carbohydrate export from leaves. By contrast, when an inductive treatment results in only a low percentage of induced plants (pgm plants exposed to one DSD), the export of carbohydrates from leaves is not increased, supporting the idea that phloem carbohydrates have a critical function in floral transition. (iii) Starch mobilization is not required to obtain an increased carbohydrate export when induction is by one LD (extended period of photosynthesis), but is absolutely essential when induction is by one DSD (period of photosynthesis unaffected). (iv) Floral induction apparently increases the capability of the leaf phloem-loading system.


Assuntos
Arabidopsis/fisiologia , Carboidratos/fisiologia , Amido/fisiologia , Mutagênese , Fotoperíodo , Folhas de Planta/metabolismo
3.
Plant J ; 9(6): 947-52, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8696370

RESUMO

A system of one-shot induction of flowering in Arabidopsis thaliana, ecotype Columbia, is described. Plants from vernalized seeds are grown for 2 months in 8 h short days at an irradiance of 48 mumol m-2 sec-1 (fluorescent light only). At that age they can be induced to flower by exposure to either a single long day or a single displaced short day. Non-induced plants stay vegetative for at least a further month. Synchrony of induction among the individuals of the population exposed to one long day is of the same order as in the best classical model plants, that is, the fastest individuals are only 6 h ahead of the slowest ones. A further advantage of this system is the large size of plants at the time of induction, allowing easy analysis of changes in leaves, leaf exudate and shoot meristem. The design of such a synchronous system will allow the timings of gene activations and deactivations to be established in the different plant parts, before flowers are initiated.


Assuntos
Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Escuridão , Luz , Modelos Biológicos , Estações do Ano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA