Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Apoptosis ; 11(3): 359-65, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16528477

RESUMO

NMR technology has dramatically contributed to the revolution of image diagnostic. NMR apparatuses use combinations of microwaves over a homogeneous strong (1 Tesla) static magnetic field. We had previously shown that low intensity (0.3-66 mT) static magnetic fields deeply affect apoptosis in a Ca2+ dependent fashion (Fanelli et al., 1999 FASEBJ., 13;95-102). The rationale of the present study is to examine whether exposure to the static magnetic fields of NMR can affect apoptosis induced on reporter tumor cells of haematopoietic origin. The impressive result was the strong increase (1.8-2.5 fold) of damage-induced apoptosis by NMR. This potentiation is due to cytosolic Ca2+ overload consequent to NMR-promoted Ca2+ influx, since it is prevented by intracellular (BAPTA-AM) and extracellular (EGTA) Ca2+ chelation or by inhibition of plasma membrane L-type Ca2+ channels. Three-days follow up of treated cultures shows that NMR decrease long term cell survival, thus increasing the efficiency of cytocidal treatments. Importantly, mononuclear white blood cells are not sensitised to apoptosis by NMR, showing that NMR may increase the differential cytotoxicity of antitumor drugs on tumor vs normal cells. This strong, differential potentiating effect of NMR on tumor cell apoptosis may have important implications, being in fact a possible adjuvant for antitumor therapies.


Assuntos
Apoptose/fisiologia , Espectroscopia de Ressonância Magnética , Neoplasias , Cálcio/metabolismo , Humanos , Células Jurkat , Magnetismo , Monócitos/citologia , Monócitos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia
2.
Ann N Y Acad Sci ; 1090: 59-68, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17384247

RESUMO

Magnetic fields (MFs) are receiving much attention in basic research due to their emerging ability to alter intracellular signaling. We show here that static MFs with intensity of 6 mT significantly alter the intracellular redox balance of U937 cells. A strong increase of reactive oxygen species (ROS) and a decrease of glutathione (GSH) intracellular levels were found after 2 h of MF exposure and maintained thereafter. We found that also other types of MFs, such as extremely-low-frequency (ELF) MFs affect intracellular GSH starting from a threshold at 0.09 mT. We previously reported that static MFs in the intensity range of 0.3-60 mT reduce apoptosis induced by damaging agents (Fanelli et al., 1998). Here, we show that ELF-MFs are also able to protect U937 from apoptosis. Interestingly, this ability is limited to the ELF intensities able to alter redox equilibrium, indicating a link between MF's antiapoptotic effect and the MF alteration of intracellular redox balance. This suggests that MF-produced redox alterations may be part of the signaling pathway leading to apoptosis antagonism. Thus, we tested whether MFs may still exert an antiapoptotic action in cells where the redox state was artificially altered in both directions, that is, by creating an oxidative (via GSH depletion with BSO) or a reducing (with DTT) cellular environment. In both instances, MFs fail to affect apoptosis. Thus, a correct intracellular redox state is required in order for MFs to exert their antiapoptotic effect.


Assuntos
Apoptose , Magnetismo , Glutationa/metabolismo , Humanos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Células U937
3.
Ann N Y Acad Sci ; 1090: 217-25, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17384265

RESUMO

Chemical/physical agents able to prevent apoptosis are receiving much attention for their potential health hazard as tumor promoters. Magnetic fields (MFs), which have been shown to increase the occurrence of some tumors, reduce damage-induced apoptosis by a mechanism involving Ca2+ entry into cells. In order to discover the mechanism of such effect of MFs, we investigated the interference of MFs on cell metabolism and analyzed cell parameters that are involved in apoptotic signaling and regulation of Ca2+ fluxes. Here we show that different types (static and extremely low-frequency, ELF pulsating) of MFs of different intensities alter plasma membrane potential. Interestingly, MFs induce plasma membrane hyperpolarization in cells sensitive to the antiapoptotic effect of MFs, whereas cells that are insensitive showed a plasma membrane depolarization. These opposite effects suggest that protection against apoptosis and membrane potential modulation are correlated, plasma membrane hyperpolarization possibly being part of the signal transduction chain determining MFs' antiapoptotic effect.


Assuntos
Apoptose , Magnetismo , Neoplasias/patologia , Cálcio/metabolismo , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Humanos , Transporte de Íons , Células Jurkat , Potenciais da Membrana , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA