Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220357, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37899021

RESUMO

Artificial light at night (ALAN) threatens natural ecosystems globally. While ALAN research is increasing, little is known about how ALAN affects plants and interactions with other organisms. We explored the effects of ALAN on plant defence and plant-insect interactions using barley (Hordeum vulgare) and the English grain aphid (Sitobion avenae). Plants were exposed to 'full' or 'part' nights of 15-20 lux ALAN, or no ALAN 'control' nights, to test the effects of ALAN on plant growth and defence. Although plant growth was only minimally affected by ALAN, aphid colony growth and aphid maturation were reduced significantly by ALAN treatments. Importantly, we found strong differences between full-night and part-night ALAN treatments. Contrary to our expectations, part ALAN had stronger negative effects on aphid colony growth than full ALAN. Defence-associated gene expression was affected in some cases by ALAN, but also positively correlated with aphid colony size, suggesting that the effects of ALAN on plant defences are indirect, and regulated via direct disruption of aphid colonies rather than via ALAN-induced upregulation of defences. Mitigating ecological side effects of ALAN is a complex problem, as reducing exposure to ALAN increased its negative impact on insect herbivores. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Assuntos
Afídeos , Animais , Poluição Luminosa , Ecossistema , Plantas , Herbivoria , Luz
2.
Front Plant Sci ; 6: 640, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379679

RESUMO

The APETALA2/Ethylene-Responsive Factor (AP2/ERF) superfamily of transcription factors (TFs) regulates physiological, developmental and stress responses. Most of the AP2/ERF TFs belong to the ERF family in both dicotyledonous and monocotyledonous plants. ERFs are implicated in the responses to both biotic and abiotic stress and occasionally impart multiple stress tolerance. Studies have revealed that ERF gene function is conserved in dicots and monocots. Moreover, successful stress tolerance phenotypes are observed on expression in heterologous systems, making ERFs promising candidates for engineering stress tolerance in plants. In this review, we summarize the role of ERFs in general stress tolerance, including responses to biotic and abiotic stress factors, and endeavor to understand the cascade of ERF regulation resulting in successful signal-to-response translation in monocotyledonous plants.

3.
New Phytol ; 191(1): 107-119, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21434927

RESUMO

• Enhanced Disease Susceptibility1 (EDS1) is an important regulator of plant basal and receptor-triggered immunity. Arabidopsis EDS1 interacts with two related proteins, Phytoalexin Deficient4 (PAD4) and Senescence Associated Gene101 (SAG101), whose combined activities are essential for defense signaling. The different sizes and intracellular distributions of EDS1-PAD4 and EDS1-SAG101 complexes in Arabidopsis leaf tissues suggest that they perform nonredundant functions. • The nature and biological relevance of EDS1 interactions with PAD4 and SAG101 were explored using yeast three-hybrid assays, in vitro analysis of recombinant proteins purified from Escherichia coli, and characterization of Arabidopsis transgenic plants expressing an eds1 mutant (eds1(L262P) ) protein which no longer binds PAD4 but retains interaction with SAG101. • EDS1 forms molecularly distinct complexes with PAD4 or SAG101 without additional plant factors. Loss of interaction with EDS1 reduces PAD4 post-transcriptional accumulation, consistent with the EDS1 physical association stabilizing PAD4. The dissociated forms of EDS1 and PAD4 are fully competent in signaling receptor-triggered localized cell death at infection foci. By contrast, an EDS1-PAD4 complex is necessary for basal resistance involving transcriptional up-regulation of PAD4 itself and mobilization of salicylic acid defenses. • Different EDS1 and PAD4 molecular configurations have distinct and separable functions in the plant innate immune response.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/imunologia , Hidrolases de Éster Carboxílico/fisiologia , Proteínas de Ligação a DNA/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Imunidade Inata/genética , Mutação , Plantas Geneticamente Modificadas/imunologia , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA