Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Drug Metab Dispos ; 52(7): 582-596, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38697852

RESUMO

The International Consortium for Innovation and Quality in Pharmaceutical Development Transporter Working Group had a rare opportunity to analyze a crosspharma collation of in vitro data and assay methods for the evaluation of drug transporter substrate and inhibitor potential. Experiments were generally performed in accordance with regulatory guidelines. Discrepancies, such as not considering the impact of preincubation for inhibition and free or measured in vitro drug concentrations, may be due to the retrospective nature of the dataset and analysis. Lipophilicity was a frequent indicator of crosstransport inhibition (P-gp, BCRP, OATP1B, and OCT1), with high molecular weight (MW ≥500 Da) also common for OATP1B and BCRP inhibitors. A high level of overlap in in vitro inhibition across transporters was identified for BCRP, OATP1B1, and MATE1, suggesting that prediction of DDIs for these transporters will be common. In contrast, inhibition of OAT1 did not coincide with inhibition of any other transporter. Neutrals, bases, and compounds with intermediate-high lipophilicity tended to be P-gp and/or BCRP substrates, whereas compounds with MW <500 Da tended to be OAT3 substrates. Interestingly, the majority of in vitro inhibitors were not reported to be followed up with a clinical study by the submitting company, whereas those compounds identified as substrates generally were. Approaches to metabolite testing were generally found to be similar to parent testing, with metabolites generally being equally or less potent than parent compounds. However, examples where metabolites inhibited transporters in vitro were identified, supporting the regulatory requirement for in vitro testing of metabolites to enable integrated clinical DDI risk assessment. SIGNIFICANCE STATEMENT: A diverse dataset showed that transporter inhibition often correlated with lipophilicity and molecular weight (>500 Da). Overlapping transporter inhibition was identified, particularly that inhibition of BCRP, OATP1B1, and MATE1 was frequent if the compound inhibited other transporters. In contrast, inhibition of OAT1 did not correlate with the other drug transporters tested.


Assuntos
Indústria Farmacêutica , Proteínas de Membrana Transportadoras , Humanos , Indústria Farmacêutica/métodos , Proteínas de Membrana Transportadoras/metabolismo , Desenvolvimento de Medicamentos/métodos , Interações Medicamentosas/fisiologia , Preparações Farmacêuticas/metabolismo , Transporte Biológico/fisiologia , Inquéritos e Questionários , Animais
2.
Commun Med (Lond) ; 4(1): 87, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755248

RESUMO

BACKGROUND: Proteolysis-targeting chimeras (PROTACs) are being developed for therapeutic use. However, they have poor pharmacokinetic profiles and their tissue distribution kinetics are not known. METHODS: A typical von Hippel-Lindau tumor suppressor (VHL)-PROTAC 14C-A947 (BRM degrader)-was synthesized and its tissue distribution kinetics was studied by quantitative whole-body autoradiography (QWBA) and tissue excision in rats following IV dosing. Bile duct-cannulated (BDC) rats allowed the elucidation of in vivo clearance pathways. Distribution kinetics was evaluated in the tissues and tumors of mice to support PK-PD correlation. In vitro studies enabled the evaluation of cell uptake mechanisms and cell retention properties. RESULTS: Here, we show that A947 quickly distributes into rat tissues after IV dosing, where it accumulates and is retained in tissues such as the lung and liver although it undergoes fast clearance from circulation. Similar uptake/retention kinetics enable tumor growth inhibition over 2-3 weeks in a lung cancer model. A947 quickly excretes in the bile of rats. Solute carrier (SLC) transporters are involved in hepatocyte uptake of PROTACs. Sustained BRM protein degradation is seen after extensive washout that supports prolonged cell retention of A947 in NCI-H1944 cells. A947 tissue exposure and pharmacodynamics are inversely correlated in tumors. CONCLUSIONS: Plasma sampling for VHL-PROTAC does not represent the tissue concentrations necessary for efficacy. Understanding of tissue uptake and retention could enable less frequent IV administration to be used for therapeutic dosing.


Proteolysis-targeting chimeras (PROTACs) are a type of potential cancer medicine designed to target proteins primarily present in tumours. There is limited data on how it is absorbed, distributed, metabolised and excreted from tissues. Here, we studied the tissue distribution of synthetic PROTAC molecules labelled with radioactivity following intravenous injection in rodent models. We find that PROTAC can rapidly distribute to target tumour tissues and its prolonged retention within the tumour cells can contribute to prevention of further tumour growth, as demonstrated in the lung cancer model. These findings suggest the evaluation of PROTAC therapeutic effectiveness directly from tumour tissues provides more relevant assessment than sampling from blood circulation, which may have implications for a reduction in intravenous dosing.

3.
Drug Metab Dispos ; 52(6): 548-554, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38604729

RESUMO

Extrapolating in vivo hepatic clearance from in vitro uptake data is a known challenge, especially for organic anion-transporting polypeptide transporter (OATP) substrates, and the well-stirred model (WSM) commonly yields systematic underpredictions for those anionic drugs, hypothetically due to "albumin-mediated hepatic drug uptake". In the present study, we demonstrate that the WSM incorporating the dynamic free fraction (f D), a measure of drug protein binding affinity, performs reasonably well in predicting hepatic clearance of OATP substrates. For a selection of anionic drugs, including atorvastatin, fluvastatin, pravastatin, rosuvastatin, pitavastatin, cerivastatin, and repaglinide, this dynamic well-stirred model (dWSM) correctly predicts hepatic plasma clearance within 2-fold error for six out of seven OATP substrates examined. The geometric mean of clearance ratios between the predicted and the observed values falls in the range of 1.21-1.38. As expected, the WSM with unbound fraction (f u) systematically underpredicts hepatic clearance with greater than 2-fold error for five out of seven drugs, and the geometric mean of clearance ratios between the predicted and the observed values is in the range of 0.20-0.29. The results suggest that, despite its simplicity, the dWSM operates well for transporter-mediated uptake clearance, and that clearance under-prediction of OATP substrates may not necessarily be associated with the chemical class of the anionic drugs, nor is it a result of albumin-mediated hepatic drug uptake as currently hypothesized. Instead, the superior prediction power of the dWSM confirms the utility of the dynamic free fraction in clearance prediction and the importance of drug plasma binding kinetics in hepatic uptake clearance. SIGNIFICANCE STATEMENT: The traditional well-stirred model (WSM) consistently underpredicts organin anion-transporting polypeptide transporter (OATP)-mediated hepatic uptake clearance, hypothetically due to the albumin-mediated hepatic drug uptake. In this manuscript, we apply the dynamic WSM to extrapolate hepatic clearance of the OATP substrates, and our results show significant improvements in clearance prediction without assuming albumin-mediated hepatic drug uptake.


Assuntos
Fígado , Modelos Biológicos , Transportadores de Ânions Orgânicos , Transportadores de Ânions Orgânicos/metabolismo , Fígado/metabolismo , Humanos , Albuminas/metabolismo , Transporte Biológico/fisiologia , Taxa de Depuração Metabólica , Ligação Proteica , Preparações Farmacêuticas/metabolismo , Animais
4.
HLA ; 103(1): e15297, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38226401

RESUMO

In kidney transplantation, donor HLA antibodies are a risk factor for graft loss. Accessibility of donor eplets for HLA antibodies is predicted by the ElliPro score. The clinical usefulness of those scores in relation to transplant outcome is unknown. In a large Dutch kidney transplant cohort, Ellipro scores of pretransplant donor antibodies that can be assigned to known eplets (donor epitope specific HLA antibodies [DESAs]) were compared between early graft failure and long surviving deceased donor transplants. We did not observe a significant Ellipro score difference between the two cohorts, nor significant differences in graft survival between transplants with DESAs having high versus low total Ellipro scores. We conclude that Ellipro scores cannot be used to identify DESAs associated with early versus late kidney graft loss in deceased donor transplants.


Assuntos
Nefropatias , Transplante de Rim , Humanos , Sobrevivência de Enxerto , Alelos , Anticorpos , Rim , Epitopos , Rejeição de Enxerto , Antígenos HLA , Doadores de Tecidos
5.
HLA ; 103(1): e15346, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38239046

RESUMO

In kidney transplantation, survival rates are still partly impaired due to the deleterious effects of donor specific HLA antibodies (DSA). However, not all luminex-defined DSA appear to be clinically relevant. Further analysis of DSA recognizing polymorphic amino acid configurations, called eplets or functional epitopes, might improve the discrimination between clinically relevant vs. irrelevant HLA antibodies. To evaluate which donor epitope-specific HLA antibodies (DESAs) are clinically important in kidney graft survival, relevant and irrelevant DESAs were discerned in a Dutch cohort of 4690 patients using Kaplan-Meier analysis and tested in a cox proportional hazard (CPH) model including nonimmunological variables. Pre-transplant DESAs were detected in 439 patients (9.4%). The presence of certain clinically relevant DESAs was significantly associated with increased risk on graft loss in deceased donor transplantations (p < 0.0001). The antibodies recognized six epitopes of HLA Class I, 3 of HLA-DR, and 1 of HLA-DQ, and most antibodies were directed to HLA-B (47%). Fifty-three patients (69.7%) had DESA against one donor epitope (range 1-5). Long-term graft survival rate in patients with clinically relevant DESA was 32%, rendering DESA a superior parameter to classical DSA (60%). In the CPH model, the hazard ratio (95% CI) of clinically relevant DESAs was 2.45 (1.84-3.25) in deceased donation, and 2.22 (1.25-3.95) in living donation. In conclusion, the developed model shows the deleterious effect of clinically relevant DESAs on graft outcome which outperformed traditional DSA-based risk analysis on antigen level.


Assuntos
Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Epitopos , Antígenos HLA/genética , Relevância Clínica , Isoanticorpos , Alelos , Doadores de Tecidos , Rejeição de Enxerto
6.
J Pharm Sci ; 113(4): 1094-1112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38220087

RESUMO

The well-stirred model (WSM) incorporating the fraction of unbound drug (fu) to account for the effect of plasma binding on intrinsic clearance has been widely used for predicting hepatic clearance under the assumption that drug protein binding reaches equilibrium instantaneously. Our theoretical analysis reveals that the effect of protein binding on intrinsic clearance is better accounted for with the dynamic free fraction (fD), a measure of drug protein binding affinity, which leads to a putative dynamic well-stirred model (dWSM) without the instantaneous equilibrium assumption. Using recombinant CYP3A4 as the in vitro clearance system, we demonstrate that the binding effect of albumin on the intrinsic clearance of both highly bound midazolam and highly free verapamil is fully corrected by their corresponding fD values, respectively. On the other hand, fu only corrects the binding effect of albumin on the intrinsic clearance of verapamil, and yields severe over-correction of the intrinsic clearance of midazolam. The results suggest that the traditional WSM is suitable for highly free drugs like verapamil but not necessarily for highly bound drugs such as midazolam due to the violation of the instantaneous equilibrium assumption or under-estimating the true free drug concentration. In comparison, the dWSM incorporating fD holds true as long as drug elimination follows steady-state kinetics, and hence, it is more broadly applicable to drugs with different protein binding characteristics. Here we demonstrate with 36 diverse drugs, that the dWSM significantly improves the accuracy of predicting human hepatic clearance and liver extraction ratio from in vitro microsomal clearance data, highlighting the importance of drug plasma protein binding kinetics in addressing the under-prediction of hepatic clearance by the WSM.


Assuntos
Midazolam , Modelos Biológicos , Humanos , Midazolam/metabolismo , Fígado/metabolismo , Ligação Proteica , Albuminas/metabolismo , Verapamil , Taxa de Depuração Metabólica , Preparações Farmacêuticas/metabolismo , Hepatócitos/metabolismo
7.
Clin Pharmacol Ther ; 115(4): 658-672, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37716910

RESUMO

Recent breakthroughs in artificial intelligence (AI) and machine learning (ML) have ushered in a new era of possibilities across various scientific domains. One area where these advancements hold significant promise is model-informed drug discovery and development (MID3). To foster a wider adoption and acceptance of these advanced algorithms, the Innovation and Quality (IQ) Consortium initiated the AI/ML working group in 2021 with the aim of promoting their acceptance among the broader scientific community as well as by regulatory agencies. By drawing insights from workshops organized by the working group and attended by key stakeholders across the biopharma industry, academia, and regulatory agencies, this white paper provides a perspective from the IQ Consortium. The range of applications covered in this white paper encompass the following thematic topics: (i) AI/ML-enabled Analytics for Pharmacometrics and Quantitative Systems Pharmacology (QSP) Workflows; (ii) Explainable Artificial Intelligence and its Applications in Disease Progression Modeling; (iii) Natural Language Processing (NLP) in Quantitative Pharmacology Modeling; and (iv) AI/ML Utilization in Drug Discovery. Additionally, the paper offers a set of best practices to ensure an effective and responsible use of AI, including considering the context of use, explainability and generalizability of models, and having human-in-the-loop. We believe that embracing the transformative power of AI in quantitative modeling while adopting a set of good practices can unlock new opportunities for innovation, increase efficiency, and ultimately bring benefits to patients.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Humanos , Aprendizado de Máquina , Algoritmos , Processamento de Linguagem Natural
8.
Vet Res ; 54(1): 102, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919808

RESUMO

The oomycete Pythium flevoense was diagnosed as the cause of dermatitis in a young adult female harbour porpoise (Phocoena phocoena) that had been trapped in a pound net in a temperate saltwater environment. Disease from Pythium sp. infection-pythiosis-is infrequently diagnosed in humans, horses, dogs, cattle, and few other mammalian species. Pythiosis is typically associated with exposure to tropical or subtropical freshwater conditions, and typically caused by Pythium insidiosum. However, until now, pythiosis has been reported in neither marine mammals nor temperate saltwater conditions, and P. flevoense is not known as a cause of pythiosis in mammals. This porpoise developed generalised dermatitis despite treatment and euthanasia was necessary. Histopathological evaluation revealed a chronic active erosive dermatitis, with intralesional hyphae morphologically consistent with a Pythium sp. PCR analysis and sequencing of affected skin matched Pythium flevoense with a 100% similarity to the reference strain. Additional diagnostics excluded other pathogens. Based on this case report, P. flevoense needs to be considered as a mammalian pathogen. Furthermore, harbour porpoises and possibly other marine mammals may be at risk of infection with P. flevoense, and pythiosis should be included in the differential diagnosis of dermatitis in marine mammals.


Assuntos
Dermatite , Phocoena , Pitiose , Pythium , Animais , Feminino , Dermatite/veterinária , Pitiose/diagnóstico
9.
Anal Chem ; 95(8): 4086-4094, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36791153

RESUMO

Determination of drug binding kinetics in plasma is important yet extremely challenging. Accordingly, we introduce "dynamic free fraction" as a new binding parameter describing drug-protein binding kinetics. We demonstrate theoretically and experimentally that the dynamic free fraction can be determined by coupling the drug binding assay with a reporter enzyme in combination with high-resolution mass spectrometry measuring the relative initial steady-state rates of enzymatic reactions in the absence and presence of matrix proteins. This novel and simple methodology circumvents a long-standing challenge inherent in existing methods for determining binding kinetics constants, such as kon and koff, and enables assessment of the impact of protein binding kinetics on pharmaceutical properties of drugs. As demonstrated with nine model drugs, the predicted liver extraction ratio, a measure of efficiency of drug removal by the liver, correlates significantly better to the observed extraction ratio when using the dynamic free fraction (fD) in place of the unbound fraction (fu) of the drug in plasma. Similarly, the in vivo hepatic clearance of these drugs, a measure of liver drug elimination, is highly comparable to the clearance values calculated with the dynamic free fraction (fD), which is markedly better than those calculated with the unbound fraction (fu). In contrast to the prevailing view, these results indicate that protein binding kinetics is an important pharmacokinetic property of a drug. As plasma protein binding is one of the most important drug properties, this new methodology may represent a breakthrough and could have a real impact on the field.


Assuntos
Proteínas Sanguíneas , Fígado , Ligação Proteica , Proteínas Sanguíneas/metabolismo , Fígado/metabolismo , Plasma/metabolismo , Cinética
10.
Drug Metab Dispos ; 50(9): 1170-1181, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35779865

RESUMO

Predicting human pharmacokinetics (PK) during the drug discovery phase is valuable to assess doses required to reach therapeutic exposures. For orally administered compounds, however, this can be especially difficult, since the absorption process is complex. Vismodegib is a compound with unique nonlinear oral PK characteristics in humans. Oral physiologically based pharmacokinetic (PBPK) models were built using preclinical in vitro and in vivo data and successfully predicted the oral PK profiles in rats, dogs, and monkeys. Simulated drug exposures (area under the concentration-time curve from time 0 to infinity and Cmax) following oral administration were within twofold of observed values for dogs and monkeys, and close to twofold for rats, providing validation to the model structure. Adaptation of this oral PBPK model to humans, using human physiologic parameters coupled with predicted human PK, resulted in underpredictions of vismodegib exposure following both single and multiple doses. When observed human PK was used to drive the oral PBPK model, oral PK profiles in humans were well predicted, with fold errors in predicted versus observed drug exposures being close to 1. Importantly, the oral PBPK model captured the unique nonlinear, nondose-dependent PK of vismodegib at a steady state. The mechanism responsible for nonlinearity was consistent with oral absorption being influenced by nonsink permeation conditions. We introduce a new parameter, the permeation gradient factor, to characterize the effect of nonsink conditions on permeation. Using vismodegib as an example, we demonstrate the value of using oral PBPK models in drug discovery to predict the oral PK of compounds with nonlinear absorption characteristics in human. SIGNIFICANCE STATEMENT: A physiologically based pharmacokinetic (PBPK) model was built to demonstrate the value of these models early in the drug discovery stage for the prediction of human pharmacokinetics for compounds with unusual oral pharmacokinetics. In this study, our PBPK model could successfully capture the unique steady-state oral pharmacokinetics of our model compound, vismodegib. The mechanism for nonlinearity can be attributed to nonsink permeation conditions in vivo. We introduce the permeation gradient factor as a parameter to assess this effect.


Assuntos
Anilidas , Modelos Biológicos , Animais , Simulação por Computador , Cães , Haplorrinos , Humanos , Piridinas/farmacocinética , Ratos
12.
Drug Metab Dispos ; 49(9): 822-832, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34183376

RESUMO

Cytochrome P450 enzymes are responsible for the metabolism of >75% of marketed drugs, making it essential to identify the contributions of individual cytochromes P450 to the total clearance of a new candidate drug. Overreliance on one cytochrome P450 for clearance levies a high risk of drug-drug interactions; and considering that several human cytochrome P450 enzymes are polymorphic, it can also lead to highly variable pharmacokinetics in the clinic. Thus, it would be advantageous to understand the likelihood of new chemical entities to interact with the major cytochrome P450 enzymes at an early stage in the drug discovery process. Typical screening assays using human liver microsomes do not provide sufficient information to distinguish the specific cytochromes P450 responsible for clearance. In this regard, we experimentally assessed the metabolic stability of ∼5000 compounds for the three most prominent xenobiotic metabolizing human cytochromes P450, i.e., CYP2C9, CYP2D6, and CYP3A4, and used the data sets to develop quantitative structure-activity relationship models for the prediction of high-clearance substrates for these enzymes. Screening library included the NCATS Pharmaceutical Collection, comprising clinically approved low-molecular-weight compounds, and an annotated library consisting of drug-like compounds. To identify inhibitors, the library was screened against a luminescence-based cytochrome P450 inhibition assay; and through crossreferencing hits from the two assays, we were able to distinguish substrates and inhibitors of these enzymes. The best substrate and inhibitor models (balanced accuracies ∼0.7), as well as the data used to develop these models, have been made publicly available (https://opendata.ncats.nih.gov/adme) to advance drug discovery across all research groups. SIGNIFICANCE STATEMENT: In drug discovery and development, drug candidates with indiscriminate cytochrome P450 metabolic profiles are considered advantageous, since they provide less risk of potential issues with cytochrome P450 polymorphisms and drug-drug interactions. This study developed robust substrate and inhibitor quantitative structure-activity relationship models for the three major xenobiotic metabolizing cytochromes P450, i.e., CYP2C9, CYP2D6, and CYP3A4. The use of these models early in drug discovery will enable project teams to strategize or pivot when necessary, thereby accelerating drug discovery research.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Desenvolvimento de Medicamentos/métodos , Inibidores Enzimáticos , Biocatálise , Descoberta de Drogas/métodos , Interações Medicamentosas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Humanos , Inativação Metabólica , Taxa de Depuração Metabólica , Relação Quantitativa Estrutura-Atividade
13.
J Med Chem ; 64(11): 7045-7059, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34010555

RESUMO

Drug reabsorption following biliary excretion is well-known as enterohepatic recirculation (EHR). Renal tubular reabsorption (RTR) following renal excretion is also common but not easily assessed. Intestinal excretion (IE) and enteroenteric recirculation (EER) have not been recognized as common disposition mechanisms for metabolically stable and permeable drugs. IE and intestinal reabsorption (IR:EHR/EER), as well as RTR, are governed by dug concentration gradients, passive diffusion, active transport, and metabolism, and together they markedly impact disposition and pharmacokinetics (PK) of small molecule drugs. Disruption of IE, IR, or RTR through applications of active charcoal (AC), transporter knockout (KO), and transporter inhibitors can lead to changes in PK parameters. The impacts of intestinal and renal reabsorption on PK are under-appreciated. Although IE and EER/RTR can be an intrinsic drug property, there is no apparent strategy to optimize compounds based on this property. This review seeks to improve understanding and applications of IE, IR, and RTR mechanisms.


Assuntos
Mucosa Intestinal/metabolismo , Túbulos Renais/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Animais , Digoxina/química , Digoxina/metabolismo , Digoxina/farmacocinética , Meia-Vida , Humanos , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacocinética , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacologia , Piridonas/química , Piridonas/metabolismo , Piridonas/farmacocinética , Reabsorção Renal , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Triazóis/química , Triazóis/metabolismo , Triazóis/farmacologia
14.
J Cataract Refract Surg ; 47(8): 1032-1038, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33577270

RESUMO

PURPOSE: To assess potential relationships of intraocular lens (IOL) position and retinal shape in negative dysphotopsia (ND). SETTING: Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands. DESIGN: Case-control study. METHODS: High-resolution ocular magnetic resonance imaging (MRI) scans were performed in patients with ND and pseudophakic controls, and subsequently used to determine the displacement and tilt of the in-the-bag IOL about the pupil and iris. In addition, anterior segment tomography was used to assess the iris-IOL distance. Furthermore, the retinal shape was quantified from the MRI scans by fitting an ellipse to the segmented inner boundary of the retina. Both the IOL position and retinal shape were compared between groups to assess their potential role in the etiology of ND. RESULTS: In total, 37 patients with ND and 26 pseudophakic controls were included in the study. The mean displacement and tilt of the IOL were less than 0.1 mm and 0.5 degrees, respectively, in both groups and all directions. The corresponding mean iris-IOL distance was 1.1 mm in both groups. Neither of these values differed statistically significantly between groups (all P values >.6). The retinal shape showed large variations but was not statistically significantly different between the groups in both the left-right (P = .10) and the anterior-posterior (P = .56) directions. CONCLUSIONS: In this study, the in-the-bag IOL position and retinal shape did not statistically significantly differ between patients with ND and the general pseudophakic population. Given the large variation in retinal shape between subjects, however, it could still be an important factor in a multifactorial origin of ND.


Assuntos
Lentes Intraoculares , Facoemulsificação , Estudos de Casos e Controles , Humanos , Implante de Lente Intraocular , Imageamento por Ressonância Magnética , Países Baixos , Retina/diagnóstico por imagem
15.
Drug Metab Dispos ; 49(2): 159-168, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33051248

RESUMO

Suspended, plated, or sandwich-cultured human hepatocytes are routinely used for in vitro to in vivo extrapolation (IVIVE) of transporter-mediated hepatic clearance (CL) of drugs. However, these hepatocyte models have been reported to underpredict transporter-mediated in vivo hepatic uptake CL (CL uptake,in vivo ) of some drugs. Therefore, we determined whether transporter-expressing cells (TECs) can accurately predict the CL uptake,in vivo of drugs. To do so, we determined the uptake CL (CL int,uptake,cells ) of rosuvastatin (RSV) by TECs (organic anion transporting polypeptides/Na+-taurocholate cotransporting polypeptide) and then scaled it to that in vivo by relative expression factor (REF) (the ratio of transporter abundance in human livers and TEC) determined by liquid chromatography tandem mass spectrometry-based quantitative proteomics. Both the TEC and hepatocyte models did not meet our predefined success criteria of predicting within 2-fold the RSV CL uptake,in vivo value obtained from our positron emission tomography (PET) imaging. However, the TEC performed better than the hepatocyte models. Interestingly, using REF, TECs successfully predicted RSV CL int,uptake,hep obtained by the hepatocyte models, suggesting that the underprediction of RSV CL uptake,in vivo by TECs and hepatocytes is due to endogenous factor(s) not present in these in vitro models. Therefore, we determined whether inclusion of plasma (or albumin) in TEC uptake studies improved IVIVE of RSV CL uptake,in vivo It did, and our predictions were close to or just fell above our lower 2-fold acceptance boundary. Despite this success, additional studies are needed to improve transporter-mediated IVIVE of hepatic uptake CL of drugs. However, using REF and TEC, we successfully predicted the magnitude of PET-imaged inhibition of RSV CL uptake,in vivo by cyclosporine A. SIGNIFICANCE STATEMENT: We showed that the in vivo transporter-mediated hepatic uptake CL of rosuvastatin, determined by PET imaging, can be predicted (within 2-fold) from in vitro studies in transporter-expressing cells (TECs) (scaled using REF), but only when plasma proteins were included in the in vitro studies. This conclusion did not hold when plasma proteins were absent in the TEC or human hepatocyte studies. Thus, additional studies are needed to improve in vitro to in vivo extrapolation of transporter-mediated drug CL.


Assuntos
Hepatócitos/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Proteômica/métodos , Rosuvastatina Cálcica/farmacocinética , Linhagem Celular , Cromatografia Líquida/métodos , Interações Medicamentosas , Humanos , Transportadores de Ânions Orgânicos/metabolismo , Espectrometria de Massas em Tandem/métodos
16.
J Pharm Sci ; 109(10): 3181-3189, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32663597

RESUMO

Determination of free drug fraction (fu) in plasma can be challenging for labile covalent modulators due to the off-target reactivity of chemical warheads to matrix proteins. The resulting poor drug recovery yields low confidence in fu. Two approaches using diluted plasma and low temperature (4 & 20 °C) for equilibrium dialysis (ED) have been investigated using covalent modulators including osimertinib, ibrutinib, rociletinib, afatinib, neratinib and acalabrutinib. Our data indicate that stability of covalent modulators in plasma varies in different species, and drug depletion may lead to overestimation of fu if true equilibrium is not reached. Additionally, although ED at low temperature improves the recovery of covalent modulators, the impact of low temperature may lead to underestimate of fu. Overall, ED using diluted plasma is a preferred method because of its faster equilibrium, improved recovery and free of temperature effect on fu. If low temperature ED must be used for extremely labile compounds, precaution must be taken to ensure no temperature dependence of fu in plasma. Nevertheless, an orthogonal ED approach is recommended for labile covalent modulators to confirm the true equilibrium and impact of temperature on fu. Additionally, this strategy can be used for determining fu of other liable compounds.


Assuntos
Preparações Farmacêuticas , Diálise Renal , Proteínas Sanguíneas/metabolismo , Diálise , Humanos , Plasma/metabolismo , Ligação Proteica
17.
Drug Metab Dispos ; 48(5): 408-419, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32132091

RESUMO

The objectives of the present study were to characterize GNE-947 for its phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitory activities, in vitro anti-cell migration activity in human umbilical vein endothelial cells (HUVECs), in vivo antineovascularization activity in laser-induced rat choroidal neovascular (CNV) eyes, pharmacokinetics in rabbit plasma and eyes, and ocular distribution using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) and autoradioluminography. Its PI3K and mTOR K i were 0.0005 and 0.045 µM, respectively, and its HUVEC IC50 was 0.093 µM. GNE-947 prevented neovascularization in the rat CNV model at 50 or 100 µg per eye with repeat dosing. After a single intravenous injection at 2.5 and 500 µg/kg in rabbits, its plasma terminal half-lives (t 1/2) were 9.11 and 9.59 hours, respectively. After a single intravitreal injection of a solution at 2.5 µg per eye in rabbits, its apparent t 1/2 values were 14.4, 16.3, and 23.2 hours in the plasma, vitreous humor, and aqueous humor, respectively. After a single intravitreal injection of a suspension at 33.5, 100, 200 µg per eye in rabbits, the t 1/2 were 29, 74, and 219 days in the plasma and 46, 143, and 191 days in the eyes, respectively. MALDI-IMS and autoradioluminography images show that GNE-947 did not homogenously distribute in the vitreous humor and aggregated at the injection sites after injection of the suspension, which was responsible for the long t 1/2 of the suspension because of the slow dissolution process. This hypothesis was supported by pharmacokinetic modeling analyses. In conclusion, the PI3K/mTOR inhibitor GNE-947 prevented neovascularization in a rat CNV model, with t 1/2 up to approximately 6 months after a single intravitreal injection of the suspension in rabbit eyes. SIGNIFICANCE STATEMENT: GNE-947 is a potent phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor and exhibits anti-choroidal neovascular activity in rat eyes. The duration of GNE-947 in the rabbit eyes after intravitreal injection in a solution is short, with a half-life (t 1/2) of less than a day. However, the duration after intravitreal dose of a suspension is long, with t 1/2 up to 6 months due to low solubility and slow dissolution. These results indicate that intravitreal injection of a suspension for low-solubility drugs can be used to achieve long-term drug exposure.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização de Coroide/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Inibidores da Angiogênese/química , Inibidores da Angiogênese/uso terapêutico , Animais , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Meia-Vida , Células Endoteliais da Veia Umbilical Humana , Humanos , Injeções Intravenosas , Injeções Intravítreas , Masculino , Modelos Biológicos , Soluções Oftálmicas/farmacologia , Soluções Oftálmicas/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/química , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Coelhos , Ratos , Solubilidade , Serina-Treonina Quinases TOR/metabolismo , Distribuição Tecidual
18.
Vet Res ; 50(1): 88, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666128

RESUMO

Harbour porpoises (Phocoena phocoena) in the North Sea live in an environment heavily impacted by humans, the consequences of which are a concern for their health. Autopsies carried out on stranded harbour porpoises provide an opportunity to assess health problems in this species. We performed 61 autopsies on live-stranded harbour porpoises, which died following admission to a rehabilitation centre between 2003 and 2016. The animals had stranded on the Dutch (n = 52) and adjacent coasts of Belgium (n = 2) and Germany (n = 7). We assigned probable causes for stranding based on clinical and pathological criteria. Cause of stranding was associated in the majority of cases with pathologies in multiple organs (n = 29) compared to animals with pathologies in a single organ (n = 18). Our results show that the three most probable causes of stranding were pneumonia (n = 35), separation of calves from their mother (n = 10), and aspergillosis (n = 9). Pneumonia as a consequence of pulmonary nematode infection occurred in 19 animals. Pneumonia was significantly associated with infection with Pseudalius inflexus, Halocercus sp., and Torynurus convolutus but not with Stenurus minor infection. Half of the bacterial pneumonias (6/12) could not be associated with nematode infection. Conclusions from this study are that aspergillosis is an important probable cause for stranding, while parasitic infection is not a necessary prerequisite for bacterial pneumonia, and approximately half of the animals (29/61) probably stranded due to multiple causes. An important implication of the observed high prevalence of aspergillosis is that these harbour porpoises suffered from reduced immunocompetence.


Assuntos
Aspergilose/veterinária , Pulmão/patologia , Infecções por Nematoides/veterinária , Phocoena , Pneumonia Bacteriana/veterinária , Pneumonia/veterinária , Animais , Aspergilose/epidemiologia , Bélgica/epidemiologia , Alemanha/epidemiologia , Imunocompetência , Infecções por Nematoides/mortalidade , Infecções por Nematoides/parasitologia , Países Baixos/epidemiologia , Mar do Norte/epidemiologia , Phocoena/imunologia , Pneumonia/microbiologia , Pneumonia/mortalidade , Pneumonia/parasitologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/mortalidade , Prevalência
19.
Drug Metab Dispos ; 47(10): 1146-1155, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31358513

RESUMO

Antibody-drug conjugates (ADCs) contain a disease-receptor antibody and a payload drug connected via a linker. The payload delivery depends on both tumor properties and ADC characteristics. In this study, we used different linkers, attachment sites, and doses to modulate payload delivery of several ADCs bearing maytansinoids (e.g., DM1), auristatins (e.g., MMAE), and DNA alkylating agents [e.g., pyrrolo[2,1-c][1,4]benzodiazepine-dimer (PBD)] as payloads in HER2- or CD22-expressing xenograft models. The tumor growth inhibition and ADC stability and exposure data were collected and analyzed from these dosed animals. The trend analysis suggests that intratumoral payload exposures that directly related the combination of conjugate linker and dose correlate with the corresponding efficacies of three payload types in two antigen-expressing xenograft models. These preliminary correlations also suggest that a minimal threshold concentration of intratumoral payload is required to support sustained efficacy. In addition, an ADC can deliver an excessive level of payload to tumors that does not enhance efficacy ("Plateau" effect). In contrast to tumor payload concentrations, the assessments of systemic exposures of total antibody (Tab) as well as the linker, dose, site of attachment, plasma stability, and drug-to-antibody ratio changes of these ADCs did not consistently rationalize the observed ADC efficacies. The requirement of a threshold payload concentration for efficacy is further supported by dose fractionation studies with DM1-, MMAE-, and PBD-containing ADCs, which demonstrated that single-dose regimens showed better efficacies than fractionated dosing. Overall, this study demonstrates that 1) the linker and dose together determine the tissue payload concentration that correlates with the antitumor efficacy of ADCs and 2) an ADC can deliver an unnecessary level of payload to tumors in xenograft models.


Assuntos
Antineoplásicos Imunológicos/farmacocinética , Imunoconjugados/farmacocinética , Receptor ErbB-2/antagonistas & inibidores , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/antagonistas & inibidores , Ado-Trastuzumab Emtansina/administração & dosagem , Ado-Trastuzumab Emtansina/farmacocinética , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/química , Benzodiazepinas/química , Brentuximab Vedotin/administração & dosagem , Brentuximab Vedotin/farmacocinética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Imunoconjugados/administração & dosagem , Camundongos , Camundongos Transgênicos , Pirróis/química , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Drug Metab Dispos ; 47(10): 1122-1135, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31266753

RESUMO

The well accepted "free drug hypothesis" for small-molecule drugs assumes that only the free (unbound) drug concentration at the therapeutic target can elicit a pharmacologic effect. Unbound (free) drug concentrations in plasma are readily measurable and are often used as surrogates for the drug concentrations at the site of pharmacologic action in pharmacokinetic-pharmacodynamic analysis and clinical dose projection in drug discovery. Furthermore, for permeable compounds at pharmacokinetic steady state, the free drug concentration in tissue is likely a close approximation of that in plasma; however, several factors can create and maintain disequilibrium between the free drug concentration in plasma and tissue, leading to free drug concentration asymmetry. These factors include drug uptake and extrusion mechanisms involving the uptake and efflux drug transporters, intracellular biotransformation of prodrugs, membrane receptor-mediated uptake of antibody-drug conjugates, pH gradients, unique distribution properties (covalent binders, nanoparticles), and local drug delivery (e.g., inhalation). The impact of these factors on the free drug concentrations in tissues can be represented by K p,uu, the ratio of free drug concentration between tissue and plasma at steady state. This review focuses on situations in which free drug concentrations in tissues may differ from those in plasma (e.g., K p,uu > or <1) and discusses the limitations of the surrogate approach of using plasma-free drug concentration to predict free drug concentrations in tissue. This is an important consideration for novel therapeutic modalities since systemic exposure as a driver of pharmacologic effects may provide limited value in guiding compound optimization, selection, and advancement. Ultimately, a deeper understanding of the relationship between free drug concentrations in plasma and tissues is needed.


Assuntos
Membrana Celular/metabolismo , Descoberta de Drogas/métodos , Plasma/metabolismo , Animais , Biotransformação , Humanos , Imunoconjugados/farmacocinética , Proteínas de Membrana Transportadoras/metabolismo , Pró-Fármacos/farmacocinética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA