Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biol Interact ; 395: 111001, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38641146

RESUMO

In recent years, various poisoning incidents have been reported, involving the alleged use of the so-called Novichok agents, resulting in their addition to the Schedule I list of the Organisation for the Prohibition of Chemical Warfare (OPCW). As the physicochemical properties of these agents are different from the 'classical' nerve agents, such as VX, research is needed to evaluate whether and to what extent existing countermeasures are effective. Here, we evaluated the therapeutic potential of RSDL® (Reactive Skin Decontamination Lotion Kit) for the neutralization of percutaneous toxicity caused by Novichok agents, both in vitro and in vivo. Experiments showed the three selected Novichok agents (A230, A232, A234) could be degraded by RSDL lotion, but at a different rate. The half-life of A234, in the presence of an excess of RSDL lotion, was 36 min, as compared to A230 (<5 min) and A232 (18 min). Following dermal exposure of guinea pigs to A234, application of the RSDL kit was highly effective in preventing intoxication, even when applied up until 30 min following exposure. Delayed use of the RSDL kit until the appearance of clinical signs of intoxication (3-4 h) was not able to prevent intoxication progression and deaths. This study determines RSDL decontamination as an effective treatment strategy for dermal exposure to the Novichok agent A234 and underscores the importance of early, forward use of skin decontamination, as rapidly as possible.


Assuntos
Descontaminação , Agentes Neurotóxicos , Pele , Animais , Cobaias , Descontaminação/métodos , Pele/efeitos dos fármacos , Agentes Neurotóxicos/toxicidade , Agentes Neurotóxicos/química , Creme para a Pele/farmacologia , Creme para a Pele/química , Masculino , Substâncias para a Guerra Química/toxicidade
2.
Toxicol Appl Pharmacol ; 427: 115650, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34273408

RESUMO

Most research on medical countermeasures for nerve agent exposure assumes a military scenario, in which (autoinjector) treatment is envisaged to be available immediately. In a civilian setting however, treatment is delayed until arrival of first-aid responders. This may significantly affect treatment efficacy and the requirements for secondary intensive care. The aim of the current study was to develop a guinea pig model to evaluate the efficacy of delayed treatment following nerve agent exposure. We identified a trigger-to-treat based on a progressive stage of the toxidrome following VX exposure, which was associated with the subsiding of clonic movements. This paradigm resulted in treatment consistently being administered between 15 and 25 min post-exposure. Using the model, we investigated the potential for the anticholinergic scopolamine to act as a delayed treatment either as a standalone treatment, or as an adjunct to delayed treatment with Standard of Care (SOC), containing atropine, 2-PAM, and midazolam. The study provides a framework for a small animal model for evaluating the efficacy of treatment administered at a specific stage of the toxidrome, when immediate treatment is absent. As an adjunct, scopolamine treatment did not result in improved survival, but did show a beneficial effect on recovery, in terms of general posture. As a standalone treatment, scopolamine showed a significant, dose-responsive, beneficial effect on survival and recovery. These promising results warrant additional studies to investigate which observed physiological improvements are relevant for the recovery process and residual injury.


Assuntos
Substâncias para a Guerra Química/toxicidade , Antagonistas Colinérgicos/administração & dosagem , Agentes Neurotóxicos/toxicidade , Compostos Organotiofosforados/toxicidade , Escopolamina/administração & dosagem , Tempo para o Tratamento , Animais , Atropina/administração & dosagem , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Quimioterapia Combinada , Cobaias , Masculino , Midazolam/administração & dosagem , Compostos de Pralidoxima/administração & dosagem , Taxa de Sobrevida/tendências
3.
Sensors (Basel) ; 21(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067397

RESUMO

Early detection of exposure to a toxic chemical, e.g., in a military context, can be life-saving. We propose to use machine learning techniques and multiple continuously measured physiological signals to detect exposure, and to identify the chemical agent. Such detection and identification could be used to alert individuals to take appropriate medical counter measures in time. As a first step, we evaluated whether exposure to an opioid (fentanyl) or a nerve agent (VX) could be detected in freely moving guinea pigs using features from respiration, electrocardiography (ECG) and electroencephalography (EEG), where machine learning models were trained and tested on different sets (across subject classification). Results showed this to be possible with close to perfect accuracy, where respiratory features were most relevant. Exposure detection accuracy rose steeply to over 95% correct during the first five minutes after exposure. Additional models were trained to correctly classify an exposed state as being induced either by fentanyl or VX. This was possible with an accuracy of almost 95%, where EEG features proved to be most relevant. Exposure detection models that were trained on subsets of animals generalized to subsets of animals that were exposed to other dosages of different chemicals. While future work is required to validate the principle in other species and to assess the robustness of the approach under different, realistic circumstances, our results indicate that utilizing different continuously measured physiological signals for early detection and identification of toxic agents is promising.


Assuntos
Substâncias para a Guerra Química , Eletroencefalografia , Animais , Eletrocardiografia , Cobaias , Aprendizado de Máquina , Respiração
4.
Regul Toxicol Pharmacol ; 119: 104823, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33212192

RESUMO

Nerve agent exposure is generally treated by an antidote formulation composed of a muscarinic antagonist, atropine sulfate (ATR), and a reactivator of acetylcholinesterase (AChE) such as pralidoxime, obidoxime (OBI), methoxime, trimedoxime or HI-6 and an anticonvulsant. Organophosphates (OPs) irreversibly inhibit AChE, the enzyme responsible for termination of acetylcholine signal transduction. Inhibition of AChE leads to overstimulation of the central and peripheral nervous system with convulsive seizures, respiratory distress and death as result. The present study evaluated the efficacy and pharmacokinetics (PK) of ATR/OBI following exposure to two different VX dose levels. The PK of ATR and OBI administered either as a single drug, combined treatment but separately injected, or administered as the ATR/OBI co-formulation, was determined in plasma of naïve guinea pigs and found to be similar for all formulations. Following subcutaneous VX exposure, ATR/OBI-treated animals showed significant improvement in survival rate and progression of clinical signs compared to untreated animals. Moreover, AChE activity after VX exposure in both blood and brain tissue was significantly higher in ATR/OBI-treated animals compared to vehicle-treated control. In conclusion, ATR/OBI has been proven to be efficacious against exposure to VX and there were no PK interactions between ATR and OBI when administered as a co-formulation.


Assuntos
Atropina , Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase , Antagonistas Muscarínicos , Cloreto de Obidoxima , Compostos Organotiofosforados/toxicidade , Acetilcolinesterase/sangue , Acetilcolinesterase/metabolismo , Animais , Atropina/sangue , Atropina/farmacocinética , Atropina/uso terapêutico , Encéfalo/metabolismo , Reativadores da Colinesterase/sangue , Reativadores da Colinesterase/farmacocinética , Reativadores da Colinesterase/uso terapêutico , Modelos Animais de Doenças , Combinação de Medicamentos , Cobaias , Masculino , Antagonistas Muscarínicos/sangue , Antagonistas Muscarínicos/farmacocinética , Antagonistas Muscarínicos/uso terapêutico , Cloreto de Obidoxima/sangue , Cloreto de Obidoxima/farmacocinética , Cloreto de Obidoxima/uso terapêutico , Resultado do Tratamento
5.
Toxicol Appl Pharmacol ; 396: 114994, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32251685

RESUMO

Anticholinergic treatment is key for effective medical treatment of nerve agent exposure. Atropine is included at a 2 mg intramuscular dose in so-called autoinjectors designed for self- and buddy-aid. As patient cohorts are not available, predicting and evaluating the efficacy of medical countermeasures relies on animal models. The use of atropine as a muscarinic antagonist is based on efficacy achieved in studies in a variety of species. The dose of atropine administered varies considerably across these studies. This is a complicating factor in the prediction of efficacy in the human situation, largely because atropine dosing also influences therapeutic efficacy of oximes and anticonvulsants generally part of the treatment administered. To improve translation of efficacy of dosing regimens, including pharmacokinetics and physiology provide a promising approach. In the current study, pharmacokinetics and physiological parameters obtained using EEG and ECG were assessed in naïve rats and in sarin-exposed rats for two anticholinergic drugs, atropine and scopolamine. The aim was to find a predictive parameter for therapeutic efficacy. Scopolamine and atropine showed a similar bioavailability, but brain levels reached were much higher for scopolamine. Scopolamine exhibited a dose-dependent loss of beta power in naïve animals, whereas atropine did not show any such central effect. This effect was correlated with an enhanced anticonvulsant effect of scopolamine compared to atropine. These findings show that an approach including pharmacokinetics and physiology could contribute to improved dose scaling across species and assessing the therapeutic potential of similar anticholinergic and anticonvulsant drugs against nerve agent poisoning.


Assuntos
Atropina/uso terapêutico , Substâncias para a Guerra Química/intoxicação , Sarina/intoxicação , Escopolamina/uso terapêutico , Animais , Atropina/sangue , Atropina/farmacocinética , Atropina/farmacologia , Química Encefálica/efeitos dos fármacos , Antagonistas Colinérgicos , Eletrocardiografia/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Masculino , Camundongos , Ratos Wistar , Sarina/antagonistas & inibidores , Escopolamina/sangue , Escopolamina/farmacocinética , Escopolamina/farmacologia , Telemetria/métodos
6.
Chem Biol Interact ; 296: 34-42, 2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30217478

RESUMO

The efficacy and pharmacokinetics of the aqueous co-formulation contents of the Trobigard™ (atropine sulfate, obidoxime chloride) auto-injector were evaluated in a sarin exposed guinea pig model. Two subcutaneous (sc) sarin challenge doses were evaluated in guinea pigs instrumented with brain and heart electrodes for electroencephalogram (EEG) and electrocardiogram (ECG). Sarin challenge doses were chosen to reflect exposure subclasses with sublethal (moderate to severe clinical signs) and lethal consequences. The level of protection of intramuscular human equivalent doses of the co-formulation was defined by (1) the mitigation of signs and symptoms at a sublethal level and (2) the increase of survival time at the supralethal sarin dose levels. Pharmacokinetics of both atropine sulfate and obidoxime were proportional at 1 and 3 human equivalent doses, and only a small increase in heart rate was observed briefly as a side effect. At both sarin challenge doses, 54 µg/kg and 84 µg/kg, the co-formulation treatment was effective against sarin-induced effects. Survival rates were improved at both sarin challenge levels, whereas clinical signs and changes in EEG activity could not in all cases be effectively mitigated, in particular at the supralethal sarin challenge dose level. Reactivation of sarin inhibited cholinesterase was observed in blood, and higher brain cholinesterase activity levels were associated with a better clinical condition of the co-formulation treated animals. Although the results cannot be directly extrapolated to the human situation, pharmacokinetics and the effects over time related to plasma levels of therapeutics in a freely moving guinea pig could aid translational models and possibly improve prediction of efficacy in humans.


Assuntos
Atropina/farmacologia , Cloreto de Obidoxima/farmacologia , Sarina/antagonistas & inibidores , Animais , Atropina/administração & dosagem , Atropina/química , Atropina/farmacocinética , Reativadores da Colinesterase/administração & dosagem , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacocinética , Reativadores da Colinesterase/farmacologia , Colinesterases/metabolismo , Relação Dose-Resposta a Droga , Composição de Medicamentos , Eletroencefalografia , Cobaias , Injeções Subcutâneas , Masculino , Cloreto de Obidoxima/administração & dosagem , Cloreto de Obidoxima/química , Cloreto de Obidoxima/farmacocinética , Sarina/farmacologia , Relação Estrutura-Atividade , Taxa de Sobrevida
7.
Neurotoxicology ; 68: 167-176, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30130561

RESUMO

Organophosphate (OP) induced seizures are commonly treated with anticholinergics, oximes and anticonvulsants. Inhibition of P-glycoprotein (PgP) has been shown to enhance the efficacy of nerve agent treatment in soman exposed rats. In the present study, the promising effects of the PgP inhibitor tariquidar were investigated in more detail in rats s.c. exposed to 150 µg/kg soman. Treatment with HI-6 and atropine sulfate (125 and 3 mg/kg i.m respectively) was administered 1 min after exposure. Diazepam (0.5 mg/kg i.m.) and/or tariquidar (7.5 mg/kg i.v.) were included either at 1 min or 40 min following onset of seizures. Animals that received tariquidar, in addition to HI-6 and atropine, at 1 min, displayed a rapid normalization of EEG activity and cessation of seizure-associated behaviour. This improvement by addition of tariquidar was even more substantial in animals that also received diazepam, either immediately or delayed. Animals exhibiting lower intensity seizures displayed less severe neuropathology (neuronal loss, microglia activation and astrogliosis), primarily in the piriform cortex, and to a lesser extent amygdala and entorhinal cortex. The present findings suggest that the interaction of tariquidar with atropine may be the decisive factor for enhanced treatment efficacy, given that atropine was previously found to be a PgP substrate. A more thorough understanding of the interactions of nerve agent antidotes, in particular the actions of central anticholinergics with benzodiazepines, could contribute to a future optimization of treatment combinations, particularly those aimed at later stage medical interventions.


Assuntos
Anticonvulsivantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Quinolinas/administração & dosagem , Convulsões/prevenção & controle , Animais , Astrócitos/efeitos dos fármacos , Atropina/administração & dosagem , Encéfalo/fisiopatologia , Reativadores da Colinesterase/administração & dosagem , Colinesterases/metabolismo , Diazepam/administração & dosagem , Masculino , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Oximas/administração & dosagem , Compostos de Piridínio/administração & dosagem , Ratos Wistar , Convulsões/induzido quimicamente , Soman/toxicidade
8.
Mol Imaging ; 14: 348-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26162516

RESUMO

For intraoperative imaging, antibodies labeled with both a radionuclide and a fluorophore may be used to tag the tumor lesion with a radiolabel and a fluorescent signal at high tumor to background ratios. However, labeling antibodies with fluorescent moieties may affect the in vivo behavior of the antibody depending on the dye to antibody substitution ratio. To investigate the optimal substitution ratio for use in dual-modality image-guided surgery, we conjugated three different antibodies, MN-14 (anti-CEACAM5), girentuximab (anti-CAIX), and cetuximab (anti-EGFR), with both diethylene triamine pentaacetic acid (DTPA, for labeling with 111In) and IRdye 800CW at dye to antibody ratios of 0, 1, 1.5, 2, and 3 and assessed in vivo behavior. Biodistribution studies showed that at high dye to antibody ratios, liver uptake of the dual-labeled antibodies increased, whereas tumor uptake decreased. Conversely, very low ratios may not be optimal either because in that case, only a few antibody molecules will be dual-labeled (i.e., contain both a DTPA and an IRDye 800CW moiety), which may complicate interpretation of dual-modality data. The present study shows that, provided that the chelator to antibody ratio is high enough, a dye to antibody ratio in the range of 1 to 1.5 is optimal for antibody-targeted dual-modality imaging applications. However, the optimal configuration is antibody dependent and should be determined for each dual-labeled antibody individually.


Assuntos
Anticorpos/metabolismo , Diagnóstico por Imagem/métodos , Cuidados Intraoperatórios/métodos , Neoplasias/metabolismo , Animais , Feminino , Corantes Fluorescentes/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Coloração e Rotulagem , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA