Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sci Adv ; 9(37): eadh2458, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703365

RESUMO

This planetary boundaries framework update finds that six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity. Ocean acidification is close to being breached, while aerosol loading regionally exceeds the boundary. Stratospheric ozone levels have slightly recovered. The transgression level has increased for all boundaries earlier identified as overstepped. As primary production drives Earth system biosphere functions, human appropriation of net primary production is proposed as a control variable for functional biosphere integrity. This boundary is also transgressed. Earth system modeling of different levels of the transgression of the climate and land system change boundaries illustrates that these anthropogenic impacts on Earth system must be considered in a systemic context.

2.
Environ Toxicol Chem ; 42(6): 1212-1228, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36971460

RESUMO

While chemicals are vital to modern society through materials, agriculture, textiles, new technology, medicines, and consumer goods, their use is not without risks. Unfortunately, our resources seem inadequate to address the breadth of chemical challenges to the environment and human health. Therefore, it is important we use our intelligence and knowledge wisely to prepare for what lies ahead. The present study used a Delphi-style approach to horizon-scan future chemical threats that need to be considered in the setting of chemicals and environmental policy, which involved a multidisciplinary, multisectoral, and multinational panel of 25 scientists and practitioners (mainly from the United Kingdom, Europe, and other industrialized nations) in a three-stage process. Fifteen issues were shortlisted (from a nominated list of 48), considered by the panel to hold global relevance. The issues span from the need for new chemical manufacturing (including transitioning to non-fossil-fuel feedstocks); challenges from novel materials, food imports, landfills, and tire wear; and opportunities from artificial intelligence, greater data transparency, and the weight-of-evidence approach. The 15 issues can be divided into three classes: new perspectives on historic but insufficiently appreciated chemicals/issues, new or relatively new products and their associated industries, and thinking through approaches we can use to meet these challenges. Chemicals are one threat among many that influence the environment and human health, and interlinkages with wider issues such as climate change and how we mitigate these were clear in this exercise. The horizon scan highlights the value of thinking broadly and consulting widely, considering systems approaches to ensure that interventions appreciate synergies and avoid harmful trade-offs in other areas. We recommend further collaboration between researchers, industry, regulators, and policymakers to perform horizon scanning to inform policymaking, to develop our ability to meet these challenges, and especially to extend the approach to consider also concerns from countries with developing economies. Environ Toxicol Chem 2023;42:1212-1228. © 2023 Crown copyright and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article is published with the permission of the Controller of HMSO and the King's Printer for Scotland.


Assuntos
Inteligência Artificial , Poluição Ambiental , Humanos , Ecotoxicologia , Agricultura , Europa (Continente)
3.
Chem Sci ; 13(40): 11710-11720, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36348954

RESUMO

Recent assessments alarmingly indicate that many of the world's leading chemicals are transgressing one or more of the nine planetary boundaries, which define safe operating spaces within which humanity can continue to develop and thrive for generations to come. The unfolding crisis cannot be ignored and there is a once-in-a-century opportunity for chemistry - the science of transformation of matter - to make a critical difference to the future of people and planet. How can chemists contribute to meeting these challenges and restore stability and strengthen resilience to the planetary system that humanity needs for its survival? To respond to the wake-up call, three crucial steps are outlined: (1) urgently working to understand the nature of the looming threats, from a chemistry perspective; (2) harnessing the ingenuity and innovation that are central to the practice of chemistry to develop sustainable solutions; and (3) transforming chemistry itself, in education, research and industry, to re-position it as 'chemistry for sustainability' and lead the stewardship of the world's chemical resources. This will require conservation of material stocks in forms that remain available for use, through attention to circularity, as well as strengthening engagement in systems-based approaches to designing chemistry research and processes informed by convergent working with many other disciplines.

4.
Science ; 377(6611): eabn7950, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36074831

RESUMO

Climate tipping points occur when change in a part of the climate system becomes self-perpetuating beyond a warming threshold, leading to substantial Earth system impacts. Synthesizing paleoclimate, observational, and model-based studies, we provide a revised shortlist of global "core" tipping elements and regional "impact" tipping elements and their temperature thresholds. Current global warming of ~1.1°C above preindustrial temperatures already lies within the lower end of some tipping point uncertainty ranges. Several tipping points may be triggered in the Paris Agreement range of 1.5 to <2°C global warming, with many more likely at the 2 to 3°C of warming expected on current policy trajectories. This strengthens the evidence base for urgent action to mitigate climate change and to develop improved tipping point risk assessment, early warning capability, and adaptation strategies.

5.
R Soc Open Sci ; 9(4): 212004, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35601450

RESUMO

Strengthening resilience-elasticity or adaptive capacity-is essential in responding to the wide range of natural hazards and anthropogenic changes humanity faces. Chemistry's roles in resilience are explored for the first time, with its technical capacities set in the wider contexts of cross-disciplinary working and the intersecting worlds of science, society and policy. The roles are framed by chemistry's contributions to the sustainability of people and planet, examined via the human security framework's four material aspects of food, health, economic and environmental security. As the science of transformation of matter, chemistry is deeply involved in these material aspects and in their interfacing with human security's three societal and governance aspects of personal, community and political security. Ultimately, strengthening resilience requires making choices about the present use of resources as a hedge against future hazards and adverse events, with these choices being co-determined by technical capacities and social and political will. It is argued that, to intensify its contributions to resilience, chemistry needs to take action along at least three major lines: (i) taking an integrative approach to the field of 'chemistry and resilience'; (ii) rethinking how the chemical industry operates; and (iii) engaging more with society and policy-makers.

6.
Ecol Lett ; 25(5): 1075-1093, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35218290

RESUMO

While environmental science, and ecology in particular, is working to provide better understanding to base sustainable decisions on, the way scientific understanding is developed can at times be detrimental to this cause. Locked-in debates are often unnecessarily polarised and can compromise any common goals of the opposing camps. The present paper is inspired by a resolved debate from an unrelated field of psychology where Nobel laureate David Kahneman and Garry Klein turned what seemed to be a locked-in debate into a constructive process for their fields. The present paper is also motivated by previous discourses regarding the role of thresholds in natural systems for management and governance, but its scope of analysis targets the scientific process within complex social-ecological systems in general. We identified four features of environmental science that appear to predispose for locked-in debates: (1) The strongly context-dependent behaviour of ecological systems. (2) The dominant role of single hypothesis testing. (3) The high prominence given to theory demonstration compared investigation. (4) The effect of urgent demands to inform and steer policy. This fertile ground is further cultivated by human psychological aspects as well as the structure of funding and publication systems.


Assuntos
Conservação dos Recursos Naturais , Ciência Ambiental , Ecologia , Ecossistema , Humanos , Formulação de Políticas
7.
Nature ; 585(7826): 551-556, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908312

RESUMO

Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it  provides1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity3; however, just feeding the growing human population will make this a challenge4. Here we use an ensemble of land-use and biodiversity models to assess whether-and how-humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042-2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34-50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats-such as climate change-must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Política Ambiental/tendências , Atividades Humanas/tendências , Dieta , Dieta Vegetariana/tendências , Abastecimento de Alimentos , Humanos , Desenvolvimento Sustentável/tendências
8.
Earths Future ; 8(2): e2019EF001377, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32715010

RESUMO

The planetary boundaries framework defines the "safe operating space for humanity" represented by nine global processes that can destabilize the Earth System if perturbed. The water planetary boundary attempts to provide a global limit to anthropogenic water cycle modifications, but it has been challenging to translate and apply it to the regional and local scales at which water problems and management typically occur. We develop a cross-scale approach by which the water planetary boundary could guide sustainable water management and governance at subglobal contexts defined by physical features (e.g., watershed or aquifer), political borders (e.g., city, nation, or group of nations), or commercial entities (e.g., corporation, trade group, or financial institution). The application of the water planetary boundary at these subglobal contexts occurs via two approaches: (i) calculating fair shares, in which local water cycle modifications are compared to that context's allocation of the global safe operating space, taking into account biophysical, socioeconomic, and ethical considerations; and (ii) defining a local safe operating space, in which interactions between water stores and Earth System components are used to define local boundaries required for sustaining the local water system in stable conditions, which we demonstrate with a case study of the Cienaga Grande de Santa Marta wetlands in Colombia. By harmonizing these two approaches, the water planetary boundary can ensure that water cycle modifications remain within both local and global boundaries and complement existing water management and governance approaches.

10.
Proc Natl Acad Sci U S A ; 115(33): 8252-8259, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30082409

RESUMO

We explore the risk that self-reinforcing feedbacks could push the Earth System toward a planetary threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and cause continued warming on a "Hothouse Earth" pathway even as human emissions are reduced. Crossing the threshold would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene. We examine the evidence that such a threshold might exist and where it might be. If the threshold is crossed, the resulting trajectory would likely cause serious disruptions to ecosystems, society, and economies. Collective human action is required to steer the Earth System away from a potential threshold and stabilize it in a habitable interglacial-like state. Such action entails stewardship of the entire Earth System-biosphere, climate, and societies-and could include decarbonization of the global economy, enhancement of biosphere carbon sinks, behavioral changes, technological innovations, new governance arrangements, and transformed social values.

11.
Sustain Sci ; 13(4): 1031-1044, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147795

RESUMO

Science is increasingly able to identify precautionary boundaries for critical Earth system processes, and the business world provides societies with important means for adaptive responses to global environmental risks. In turn, investors provide vital leverage on companies. Here, we report on our transdisciplinary science/business experience in applying the planetary boundaries framework (sensu Rockström et al., Ecol Soc 14, 2009) to define a boundary-compatible investment universe and analyse the environmental compatibility of companies. We translate the planetary boundaries into limits for resource use and emissions per unit of economic value creation, using indicators from the Carnegie Mellon University EIO­LCA database. The resulting precautionary 'economic intensities' can be compared with the current levels of companies' environmental impact. This necessarily involves simplifying assumptions, for which dialogue between biophysical science, corporate sustainability and investment perspectives is needed. The simplifications mean that our translation is transparent from both biophysical and financial viewpoints, and allow our approach to be responsive to future developments in scientific insights about planetary boundaries. Our approach enables both sub­industries and individual companies to be screened against the planetary boundaries. Our preliminary application of this screening to the entire background universe of all investable stock­listed companies gives a selectivity of two orders of magnitude for an investment universe of environmentally attractive stocks. We discuss implications for an expanded role of environmental change science in the development of thematic equity funds.

12.
Sustain Sci ; 12(6): 921-931, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30147764

RESUMO

Coherently addressing the 17 Sustainable Development Goals requires planning tools that guide policy makers. Given the integrative nature of the SDGs, we believe that integrative modelling techniques are especially useful for this purpose. In this paper, we present and demonstrate the use of the new System Dynamics based iSDG family of models. We use a national model for Tanzania to analyse impacts of substantial investments in photovoltaic capacity. Our focus is on the impacts on three SDGs: SDG 3 on healthy lives and well-being, SDG 4 on education, and SDG 7 on energy. In our simulations, the investments in photovoltaics positively affect life expectancy, years of schooling and access to electricity. More importantly, the progress on these dimensions synergizes and leads to broader system-wide impacts. While this one national example illustrates the anticipated impact of an intervention in one specific area on several SDGs, the iSDG model can be used to support similar analyses for policies related to all the 17 SDGs, both individually and concurrently. We believe that integrated models such as the iSDG model can bring interlinks to the forefront and facilitate a shift to a discussion on development grounded in systems thinking.

14.
Science ; 347(6223): 1259855, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25592418

RESUMO

The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries­climate change and biosphere integrity­have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.


Assuntos
Evolução Biológica , Mudança Climática , Planeta Terra , Perda de Ozônio , Atmosfera , Água Doce , Humanos
15.
Sci Total Environ ; 409(18): 3472-81, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21689843

RESUMO

Identifying and quantifying the statistical relationships between climate and anthropogenic drivers of fire is important for global biophysical modelling of wildfire and other Earth system processes. This study used regression tree and random forest analysis on global data for various climatic and human variables to establish their relative importance. The main interactions found at the global scale also apply regionally: greatest wildfire burned area is associated with high temperature (> 28 °C), intermediate annual rainfall (350-1100 mm), and prolonged dry periods (which varies by region). However, the regions of highest fire incidence do not show clear and systematic behaviour. Thresholds seen in the regression tree split conditions vary, as do the interplay between climatic and anthropogenic variables, so challenges remain in developing robust predictive insight for the most wildfire-threatened regions. Anthropogenic activities alter the spatial extent of wildfires. Gross domestic product (GDP) density is the most important human predictor variable at the regional scale, and burned area is always greater when GDP density is minimised. South America is identified as a region of concern, as anthropogenic factors (notably land conversions) outweigh climatic drivers of wildfire burned area.


Assuntos
Mudança Climática/estatística & dados numéricos , Clima , Incêndios , Monitoramento Ambiental , Poluição Ambiental/estatística & dados numéricos , Humanos , Análise de Regressão , Árvores , Meio Selvagem
16.
Environ Pollut ; 159(10): 2214-22, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21131113

RESUMO

The organic component of atmospheric reactive nitrogen plays a role in biogeochemical cycles, climate and ecosystems. Although its deposition has long been known to be quantitatively significant, it is not routinely assessed in deposition studies and monitoring programmes. Excluding this fraction, typically 25-35%, introduces significant uncertainty in the determination of nitrogen deposition, with implications for the critical loads approach. The last decade of rainwater studies substantially expands the worldwide dataset, giving enough global coverage for specific hypotheses to be considered about the distribution, composition, sources and effects of organic-nitrogen deposition. This data collation and meta-analysis highlights knowledge gaps, suggesting where data-gathering efforts and process studies should be focused. New analytical techniques allow long-standing conjectures about the nature and sources of organic N to be investigated, with tantalising indications of the interplay between natural and anthropogenic sources, and between the nitrogen and carbon cycles.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Nitrogênio/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Nitratos/análise , Nitritos/análise , Ciclo do Nitrogênio , Chuva/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA