Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 838(Pt 2): 155981, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588822

RESUMO

Climate change is imposing drier atmospheric and edaphic conditions on temperate forests. Here, we investigated how deep soil (down to 300 cm) water extraction contributed to the provision of water in the Fontainebleau-Barbeau temperate oak forest over two years, including the 2018 record drought. Deep water provision was key to sustain canopy transpiration during drought, with layers below 150 cm contributing up to 60% of the transpired water in August 2018, despite their very low density of fine roots. We further showed that soil databases used to parameterize ecosystem models largely underestimated the amount of water extractable from the soil by trees, due to a considerable underestimation of the tree rooting depth. The consensus database established for France gave an estimate of 207 mm for the soil water holding capacity (SWHC) at Fontainebleau-Barbeau, when our estimate based on the analysis of soil water content measurements was 1.9 times as high, reaching 390 ± 17 mm. Running the CASTANEA forest model with the database-derived SWHC yielded a 185 gC m-2 y-1 average underestimation of annual gross primary productivity under current climate, reaching up to 687 ± 117 gC m-2 y-1 under climate change scenario RCP8.5. It is likely that the strong underestimation of SWHC that we show at our site is not a special case, and concerns a large number of forest sites. Thus, we argue for a generalisation of deep soil water content measurements in forests, in order to improve the estimation of SWHC and the simulation of the forest carbon cycle in the current context of climate change.


Assuntos
Ecossistema , Solo , Mudança Climática , Secas , Água
2.
Plant Cell Environ ; 44(9): 2938-2950, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34033133

RESUMO

Fertilization is commonly used to increase growth in forest plantations, but it may also affect tree water relations and responses to drought. Here, we measured changes in biomass, transpiration, sapwood-to-leaf area ratio (As :Al ) and sap flow driving force (ΔΨ) during the 6-year rotation of tropical plantations of Eucalyptus grandis under controlled conditions for throughfall and potassium (K) fertilization. K fertilization increased final tree height by 8 m. Throughfall exclusion scarcely affected tree functioning because of deep soil water uptake. Tree growth increased in K-supplied plots and remained stable in K-depleted plots as tree height increased, while growth per unit leaf area increased in all plots. Stand transpiration and hydraulic conductance standardized per leaf area increased with height in K-depleted plots, but remained stable or decreased in K-supplied plots. Greater Al in K-supplied plots increased the hydraulic constraints on water use. This involved a direct mechanism through halved As :Al in K-supplied plots relative to K-depleted plots, and an indirect mechanism through deteriorated water status in K-supplied plots, which prevented the increase in ΔΨ with tree height. K fertilization in tropical plantations reduces the hydraulic compensation to growth, which could increase the risk of drought-induced dieback under climate change.


Assuntos
Eucalyptus/metabolismo , Fertilizantes , Agricultura Florestal/métodos , Potássio/farmacologia , Árvores/metabolismo , Água/metabolismo , Biomassa , Eucalyptus/efeitos dos fármacos , Eucalyptus/fisiologia , Folhas de Planta/metabolismo , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/fisiologia , Árvores/efeitos dos fármacos , Árvores/fisiologia , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA